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All available numerical data on virial coefficients along with simulation results for the compressibility 
factors of hard body fluids and their mixtures have been compiled. Practically aU relevant theories 
for these fluids (lattice theories, specific methods for discontinuous potentials, integral and 
integro-differential theories, expansion and resummation techniques, as weU as perturbation 
and conformal theories) are reviewed and their results are compared with the data. The individual 
methods are criticaUy assessed and their advantages and limits are discussed. 

1. INTRODUCTION 

Accurate description of the equilibrium behaviour of fluids - the aggregate state 
between solid (modelled by the perfectly ordered crystal) and the perfect gas (a com­
pletely disordered system with negligible intermolecular interactions) - from the first 
principles has been one of the most challenging tasks of contemporary physics and 
chemistry viewed by many as "the last frontier" in the quest for real understanding 
of properties of matter. From the practical point of view, the knowledge of an equa­
tion of state enables one to evaluate all the equilibrium properties of liquids and 
gases and their mixtures; these properties are essential for design and control of the 
majority of chemical process equipments. 

First relationships, employed in the classical physical chemistry and chemical 
engineering, were formulated already in the second half of the last century (van der 
Waals equation) and at the beginning of this century (virial expansions) and reflected 
simple views on intermolecular forces. Further impulse came in the thirties and for­
ties when more realistic models of the intermolecular intractions were used in combi­
nation with lattice theories of liquids. However, due to the assumption of highly 
ordered structure (common to the original lattice theories) the obtained equations 
of state did not find wider applications. 

A completely new approach to the formulation of the equation of state of real 
non-associated fluids stems from the results of an analysis of the effect of repulsive 
and attractive forces on the structure of fluids. The fact that harsh repulsive forces 
have a dominant effect on the structure has stimulated studies of hard body (HB) 
systems, i.e. the systems where the repulsive forces are modelled in the simplest 
way and the attractive forces are neglected completely. The simplicity of the inter­
action potential made it possible to find either an analytical or a numerical solution 
of equations for functions characterizing the fluid structure, the exact determination 
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of several lowest virial coefficients and the development of equations of state for 
such systems. Enormous progress in obtaining pseudoexperimental data has become 
possible by the use of computers. The knowledge of a HB equation of state has 
enabled then to apply perturbation methods to determine thermodynamic functions 
of pure compounds and mixtures at a broad range of conditions. Expressions for 
the HB compressibility factor form now the "exact" term of modern semiempirical 
equations of state, the so called augmented van der Waals equations, which begin to 
show their usefulness in solving practical chemical-engineering problems. All these 
achievements only underline the importance of the knowledge of the HB fluid prop­
erties not only for understanding the behaviour and developing a theory of dense 
fluids, but also for their direct practical applicability. 

Because of their simplicity, the HB systems serve frequently as first testing systems 
for theories. Vast original literature therefore exists on applications of different 
theories to these systems as well as on simulation studies. Since the monograph 
by Hirschfelder and coworkers l , a number of books dealing with liquids has been 
published but these focus mainly on basic ideas and methods and not on results 
for specific systems. Further, all monographs with the only exception2 deal with 
simple liquids while molecular liquids (i.e. the systems with orientational dependent 
intermolecular interactions) are only briefly touched, if at all. Review articles3 - lo 

better reflect recent developments in the field of chemical physics of non-associated 
molecular fluids but they again focus rather on methods, properties, and results 
than on systems. An exception may be an article by Boublikll, reviewing certain 
methods and results for virial coefficients and equations of state of HB fluids. Partial 
summaries about structural properties of these fluids and methods describing them 
may be found in the review articles by Streett and Gubbinss and Smith and Nezbeda9 . 

The goal of the present paper is therefore to review in detail the contemporary 
state of our knowledge about the equilibrium properties of the HB fluids. Because 
of the large amount of material to deal with we confine our considerations to the 
pressure-volume-temperature (P-V-T) behaviour only. We compile and assess 
all methods used, and compile and critically evaluate all existing data of both the 
virial coefficients and compressibility factors. The article is organized as follows: 
In Section 2 the considered HB models are defined and basic geometric relations 
are given. Section 3 is devoted to virial coefficients of pure fluids: The basic relations 
are given first, followed by exact analytical results, numerical results, and approximate 
analytical results. Tables listing all the virial coefficients known to date are pres­
ented. Section 4 deals with equations of state for one-component systems. Basic 
routes to obtain them are followed by a sketch of the simulation methods and 
details relevant to hard body fluids, and by a complete, to our best knowledge, col­
lection of the P-V-T data. Various methods are then outlined and comparison of 
their predictions with simulation data takes up the rest of the section. Section 5 
deals with hard body fluid mixtures, both virial coefficients and equations of state, 
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and its structure is similar to that of Sections 3 and 4. Concluding remarks are 
given in Section 6. 

2. HARD BODY SYSTEMS 

Hard bodies model in the simplest way the steep repulsive forces between real mole­
cules and should thus copy, at least approximately, their size and shape. Regardless 
of the model considered, the HB potential, u, takes on two values only: 

( ) + 00 if particles 1 and 2 overlap 
U 1,2 == 

o otherwise. 
(2.1) 

All geometric considerations reduce therefore to the problem of determining overlap! 
nonoverlap for a given configuration defined by a set of parameters. This set usually 
consists of a distance, r, between two fixed points (reference points), one within 
each molecule, and of a set of angles, COl> CO2 , defining the orientation of the mole­
cules. 

In the case of spherically symmetric molecules (e.g. of rare gases), pair inter­
actions depend only on the centre-to-centre distance. The corresponding HB is 
a sphere (HS) of a diameter (I defining the closest possible approach of two particles. 
For polyatomic molecules there are, in principle, two possibilities how to describe 
their shape: by a fused-hard-sphere (FHS) model which is a special case of a more 
general interaction site (IS) model, or by a convex body (CB) model. 

The IS model views a molecule as a system of interaction sites (usually coinciding 
with individual atoms forming the molecule) which interact with the interaction sites 
of the other molecule, 

(2.2) 

If the interaction sites are represented by hard spheres, ul1./l = UMS' the FHS 
model is recovered. The FHS models investigated to date are depicted in Figs la 
and lb. These are homo- and hetero-nuclear diatomics (dumbells), linear and non­
linear triatomics (both homo- and hetero-nuclear), and tetrahedral penta-atomics 
(a model of CCI4). Throughout the paper the diameter of a larger sphere for diatomics, 
(lA' and of a central sphere for polyatomics, (Ie, are set to unity. 

The other group of models, the CB models, was introduced by Kihara12• He 
models the entire molecule or its core by a CB in accordance with the actual molecular 
structure. In a general case of realistic interactions the pair potential is then assumed 
to depend explicitly only on the shortest surface-to-surface distance, s, between the 
CB. Variety of up to date considered shapes represented by CB is somewhat larger 
in comparison with the FHS models. The models are shown in Figs 2a, b, c and 
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comprise prolate and oblate spherocylinders, prolate and oblate ellipsoids (spheroids), 
droplet, diamond (double cone), and cube. The breadth of CB is always set to unity 
and the length is denoted by y. 

la Ib 

FIG. 1 

Fused hard sphere models: a general diatomics and symmetric triatomics; b tetrahedral penta­
atomics 

o 
80-eo 
{Il -8 0 

2a 2b 

FIG. 2 

2c 

Convex body models: a sphere and prolate and oblate spherocylinders; b prolate and oblate 
ellipsoids; c diamond and drop 
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One advantage of the CB models over the FHS models is that geometry of CB is 
well developed and makes it possible to treat different CB in a unique way regardless 
of their actual shape. A convex body may be characterized by three geometric 
quantities: volume, "fI, surface area, g, and the (1/4n:)-multiple of the mean 
curvature integral, £7l. These three geometric functionals can be simply expressed 
in terms of two polar angles, 8 and <p, that determine a tangent plane (or more 
generally, a supporting plane) of the CB12: 

"fI = - r - x - d8 d<p 1 If (or or) 
3 08 o<p 

(2.3) 

g = If v (~~ x or) d8 d<p 
08 o<p 

(2.4) 

&l = - r - x - d8d<p = - (r.v)sm8d8d<p. 1 If (OV OV) 1 If . 
4n: 88 o<p 41t 

(2.5) 

In these expressions reO, <p) is the vector from a reference point (any fixed point within 
the body) to the contact point of the CB with the tangent plane and v is the unit 
vector in the direction of the normal of this plane (see Fig. 3a). For convenience 
we give in Table I expressions of the three basic geometric functionals (in terms of 
parameters defining individual CB) for frequently employed CB. 

Many convex bodies can be viewed as a parallel body to a simpler core, e.g. the 
prolate spherocylinder is the parallel body to a rod. The knowledge of "fie' ge, 
and £7le of the core enables one to evaluate13 the geometric functionals "fIeH' gc+~, 
and &le+~ of a parallel convex body c + ~ of thickness ~ (the so called Steiner's for­
mUlas): 

£7leH = !]te + ~ 

ge+~ = ge + 81t&le~ + 41t~2 

'f/e+~ = "fie + ge~ + 41t&lce + 41t~3 . 

(2.6) 

(2.7) 

(2.8) 

Two convex bodies 1 and 2 do not overlap if the shortest distance between their 
cores, Ie, is greater than the common thickness, Ie > ~1 + (2 = (1. Then the shortest 
distance s between two convex surfaces is a well-defined function, s = Ie - (1, and 
is non-negative. Variables associated with s are the direction v, v = v(8, <p), and 
the orientation of both bodies, (l)i (see Fig. 3b). For the transformation of a volume 
element dr12 then it holds14 : 

dr12 = v - x -- ds d8 d<p = dg1+s+2 (1)12 ds, ( orl2 Or12) ( ) 
. 08 o<p 

(2.9) 
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where d9' denotes an element of a surface created by bodies 1 and 2 at separation 
s and at given orientations mi' If this surface element is integrated (at s = const.) 
over orientations, we get the average surface area of a body 1 + s + 2, which can 
be expressed through the surface areas of the indiviual bodies: 

where 

9'1+2 = 9'1 + 9'2 + 81tBl lal2 

alt+2 = all + al2 . 

(2.10) 

(2.11) 

(2.12) 

For completeness we also give here expressions for the mean curvature and aver­
age volume of body 1 + s + 2: 

all +5+2 = al l +2 + S 

1/'1+5+2 = 1'"1+2 + 9'1+2S + 41tBl1 +2 S2 + !1tS 3 , (2.13) 

where 

(2.14) 

and 1'"1 is the volume of body i. 

(/ II 

FIG. 3 

Definition of basic quantities for a single particle (0) and a pair of convex bodies (b) 
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In majority of papers dealing with the FHS models the centre of mass (CM) has 
been traditionally used as a reference point which causes mathematics to become 
very complex. Reasons for that are easily understood from examining Fig. 4, where 
we show two arrangements for homonuclear diatomics. To perform the integration 
over orientations in the CM system means to change positions of all spheres and, 
consequently, all four pairs must be taken into account in geometrical considerations. 
Much more suitable seems therefore a system which is linked with an interaction 
site (site-centered system, SC). From Fig. 4 it is seen that two ex-spheres are auto­
matically out of game and positions of only the p-spheres are changed making so 
the geometry transparent. Such a system was first used by Nezbeda15 in connection 
with an approximate treatment of homonuclear diatomics. Later on Nezbeda and 
Smith16 and Tildesley and coworkers17 •18 showed that also general expressions for 
the thermodynamic and correlation functions assume a much simpler form in the 
SC coordinate system. 

3. VIRIAL COEFFICIENTS 

3.1. Virial Expansion 

The virial expansion, 

(3.1) 

was first suggested by Kamerlingh Onnes19 already in 1901 as an empirical correction 
to the ideal gas equation of state. In Eq. (3.1) fJ = (kTt 1, T is the absolute tempera­
ture, P is the pressure, (l is the number-density, (l = N/V. and B j are the virial coeffi-

FIG. 4 

Two different coordinate systems for FHS 
models: the centre-of-mass system (upper 
arrangement) and the site-centred system 
(lower arrangement) 
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cients. For years the application of Eq. (3.1) was confined to the low density region 
only where it accounts for gas non-ideality. Application of such techniques as Pade 
approximants or a perturbed virial expansion extends the practical utility of the 
expansion to much higher densities. The virial expansion provides also a low density 
limit of any fluid equation of state and must be therefore considered as an integral 
part of a theoretical description of the P-V-T behaviour of fluids. 

Both the canonical and grand-canonical ensembles can be used to derive basic 
relations for a fluid system and the derivation of Eq. (3.1) can be found in nearly 
every textbook on statistical mechanics20 - 23. ]n the following we briefly outline 
the derivation using the grand-canonical ensemble. 

Let us consider an open system of classical molecules confined to a volume V 
at a temperature T. The potential energy of an N-particle system, UN' is generally 
given as a sum of pair, triplet, ... etc. interactions, 

(3.2) 

where arguments (i, ... ) denote dependence on positions and orientations of particles 
i, .... The N-particle configuration integral is given by 

ZN = r .. fexp [-PUN] del) d(2) ... d(N). (3.3) 

Since the grand-canonical partition function is given by 

(3.4) 

where Zo is the absolute activity, then, using standard thermodynamic relations and 
some algebra, it is easy to find the relations between B j and Z. (for details see e.g. 
refs20 •22): 

B2(T) = -(1/2V) (Z2 - ZD 
B3(T) = -(1/3V) (Z3 - 3Z~/ZI + 3Z2Z1 - Zn 
etc. 

Inserting appropriate expressions for Zj into (3.5) we get 

B2(T) = -(1/2V) j{exp [ -PU12] - I} del) d(2) = 

Collection Czechoslovak Chern. Cornrnun. [Vol. 51] [1986] 
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= -(1/2V) flU(I, 2) d(l) d(2) , (3.7) 

where lu is the so called Mayer function. For potentials of a finite range, U = 0 
for r > rranllo, the I-function is also identically equal to zero beyond that range. For 
spherical particles Eq. (3.7) assumes then a very simple form 

(3.8) 

where r12 denotes the centre-centre separation. For non-spherical particles we have 

B2(T) = -21t f{exp [-pu(rI 2' WI> w2)] - I} r~2 dr12 dOll dW2 = 

= _21tf:raD··[(e> -1]r2 dr, (3.9) 

where (e(l, 2» is the average Boltzmann factor, 

(3.10) 

and 

The expressions for the higher virial coefficients will contain non-additive energy 
terms Ujjlr., •••• It is known that neglecting all these terms provides usually quite a 
good approximation for real systems. For the third virial coefficient we thus can get 

(3.11) 

For spherical particles this integral can be simplified by introducing bipolar co­
ordinates, but this is useless for non-spherical particles due to the integration over 
orientations. 

Expressions for the higher virial coefficients become soon very complex. To make 
these expressions more transparent, a graphical representation of the integrals is 
usually used. The first four virial coefficients are shown in Fig. 5, where the black 
circles denote integration variables associated with a particle, the bonds denote the 
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Mayer function and the open circle denotes a particle with which a coordinate system 
is fixed. In evaluation of these diagrams any labelling of the black circles can be used. 

A mathematical technique has also been developed allowing one to perform 
mathematical operations directly with the graphs instead of working with integrals. 
Details about the diagrammatic technique can be found e.g. in refs24 •2s • Instead of 
denoting the virial coefficients as B i , a sequence of capital letters B, C, ... has also 
been often used. The latter notation has given rise to the labelling of individual 
diagrams according to the number of f-bonds. Thus, for instance, C3 stands for the 
only diagram of B3 , D4, D5, and D6 for diagrams contributing to B4 , etc. (see Fig. 5). 

Using the graphs with f-bonds only (Mayer representation), the fourth virial 
coefficient is given by 3 diagrams, the fifth one already by 10 diagrams and the sixth 
virial coefficient by as many as 56 diagrams. These numbers can be reduced by 
considering bothf- and e-bonds (Ree-Hoover representation26). In any graph every 
pair of points not connected by a line may be considered as being connected by the 
unit function. Writing 

(3.12) 

the graphs decompose into those with f-bonds only and those with e- and f-bonds, 
with many cancellations taking place. The result is demonstrated for B4 in the 
fourth row of Fig. 5. The reduction is more striking for higher coefficients. The ten 
Mayer graphs for Bs reduce to only five and 56 diagrams for B6 reduce to 23. 

Another representation, the so-called two point representation, of the virial coeffi­
cients of hard body fluids is based on the fact that the derivative of the hard body 
pair potential is proportional to the Dirac <5-function. Starting from the expression 

FIG. 5 

Diagrams contributing to the virial coeffi­
cients B2 through B4. The third through 
fifth rows show different representations 
of B4 : Mayer representation with I-bonds 
(--) only (3rd row); Ree-Hoover repre­
sentation with both 1- and e-bonds (----; 
4th row); two-point representation (last row) 

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986] 
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for the compressibility factor in terms of the pair correlation function (see Section 
4.1), one can perform integration over dr 12 which means that all terms are evaluated 
under the constraint that particles 1 and 2 are in contact. Thus, for instance, 

(3.13) 

and r 12 = a for hard spheres. Further details about this vi rial series representation 
may be found e.g. in ref.27. As an example, the two-point graphs contributing to 
B4 are shown in the last row of Fig. 5. 

3.2. Virial Coefficients: Exact Results 

Evaluation of the lowest virial coefficients for hard spheres had been an object of 
interest long time before the exact formulas for these coefficients were derived, with 
such names as van der Waals, van Laar, and Boltzmann involved. 

The integration in Eqs (3.9), (3.11), ... is simplest for the hard sphere fluid and 
has been performed analytically up to B4 • Due to a greater number of integration 
variables for nonspherical molecules, mathematical complexity has not allowed to 
get a closed analytical result for these models beyond B2 • Specifically, the analytical 
results are available for all convex bodies12, for fused diatomics28 .29 and a special 
model of linear triatomics29. In all remaining cases we have to resort to a numerical 
integration. 

The exact (analytical or numerical) virial coefficients are known at present up 
to B7 for hard spheres30; for nonspherical models the most frequently computed 
and reported coefficients are B 2 , B 3 , and B4 although for some models also Bs has 
been evaluated. The virial coefficients reported in the literature up to 1984 have 
been compiled by Malijevsky and Labfk31 . 

3.2.1. Numerical Integration 

It is well-known that, in general, common quadrature technique becomes ineffective 
for fourfold integrals. To compute B2 for a nonspherical model we have to handle 
with at least a fivefold integral and in the case of Bs of hard spheres with a 12-fold in­
tegral. For these reasons the Monte Carlo (Me) integration is often applied. 

For determining the virial coefficients, the MC method is used in two different 
ways. The "classical" MC integration, i.e. the determination of a fraction of a multi­
dimensional volume by the uniform sampling of the total volume, is useful only 
for B2 • For higher coefficients the fraction becomes very small which makes the 
method inaccurate. 
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The other Me method for hard bodies is based on the fact that all graphs defining 
the vi rial coefficients contain an open chain, e.g. 0-.-.-'. for B4 , which is re­
lated directly to the second virial coefficient: 

[0----. r (3.14) 

Since we can write, for instance, 

D6 ----- 0 • •• 
(3.15) 

o • • • 

this coefficient may be evaluated as the ratio of D6 to the appropriate power of B2 • It 
means that we must generate first a chain (3.14) which will then represent a trial 
configuration32 • Having a chain, a check is made whether bond 1-4 exists and, 
in turn, whether bonds 1-3 and 2-4 exist, too. (We use labelling of points which 
starts at the open circle and goes counter-clockwise). All graphs can be evaluated 
in this way including those with e-bonds (c/. Fig. 5). It is evident that for the applica­
tion of this method B2 must be known very accurately. 

1 n early applications only several tens of thousands of trial configurations were 
generated to evaluate Bj for linear models and for oblate spherocylinders. It seems 
nowadays that at least several hundreds of thousands of configurations must be 
generated for good statistics and in some cases, depending on the model in hand, 
a million or even more configurations33 .34 are necessary. Accuracy of the results is, 
according to our experience, 0·25-0·75 per cent for B3 and 0·8-2·0 percent for B4 • 

These uncertainties account for various effects including also an algorithm depend­
ence, while the much higher accuracy specified sometimes in original papers seems 
to correspond only to reproducibility of the results obtained by using the same 
program and the same machine configuration. 

In the above method a new trial configuration is generated independently of the 
previous configurations. There exists a third method of evaluating the virial coeffi­
cients using the Metropolis-like sampling (with f bonds instead of e-bonds) to gene­
rate a trial configuration: If a trial configuration exists, the next one may be obtained 
by performing a restricted random walk of the individual particles forming the chain. 
Such an approach was employed e.g. by Mulder and Frenkel35 for ellipsoids. 

Quite recently Lad0 36 proposed a method to calculate numerically (by employing 
the spherical harmonic expansion, see Section 4.1.) the convolution integral c(1, 2) 
(Eq. (3.13) with arbitrary /"11 distance) for molecular fluids. Integral of e(l, 2) over 
all its variables is directly related to B3 and this way may be therefore used either to 
get B 3 as a by-product of computations or as a check of the Me results and viee 
versa. 
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3.2.2. Hard Spheres 

The second virial coefficient equals, from Eq. (3.8), one half of the excluded volume 
around a sphere, 

(3.16) 

where "1/ is the volume of a sphere. 

The third virial coefficient can be simply evaluated by calculating first the convolu­
tion integral, 

(3.17) 

which is just the excluded volume common to two spheres separated by a distancer12: 

Since, 

we get 

c(ru) = tn[l - i(r12/CT) + -?~r12/CT)3] CT3 , r12 < 2CT 

= 0, r12 > 2CT . 

For evaluating B4 the result for c(r12) is also useful: 

D4 = c r I 2 dr 12 = -- "1/ f[ ( )]2 17408 3 

105 

D5 = f r12 c r12 dr12 = "1/ • f ( ) [ ( )]2 406 208 3 

3360 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The most difficult term is the fully connected graph D6. First calculations of this 
graph were performed by van Laar37 and Boltzmann38 in 1899 by using an extremely 
complicated algebra. More than fifty years elapsed until their results were verified 
in 1952 by Nijboer and van Hove39 who used the two-point graph formulation. 
Another approach was later used by Rowlinson40 and Powe1l41 • The final total 
result is 

B /"1/3 = 2 707 + 438..)2 - 4 131 arccos (1/3) 
4 70 70n ' 

(3.23) 
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i.e. 

(3.24) 

The fifth virial coefficient is given by a sum of ten diagrams, seven of which were 
calculated analytically42 ,43. From the remaining three clusters the most difficult is, 
as usual, the complete star E10 which was calculated by several authors using different 
methods26 ,43-46. Kratky30 re-examined in detail all these results and came to the 
value 

B5IB~ = 0·110252 ± 0·000001 . (3.25) 

He also re-analysed and then corrected Ree and Hoover's results26 for B6 and B7 • 

All these results along with the approximate values for Be, B9 , and B10 are given 
in Table II. 

Concerning the higher virial coefficients, one may find claims in the literature26 ,27 

that some of them may be negative. Using approximate theories to find lower and 
upper bounds to Bn for arbitrary n, Kratky30 has come to the conclusion that all 
virial coefficients remain positive. 

3.2.3. Convex Body Models 

An advantage of the convex body models is that geometry of a single convex object 
and of a pair of such objects is quite well developed - cf. Section 2. Consequently, 
the second virial coefficient can be expressed analytically for any convex body model. 

TABLB II 

Virial coefficients of hard spteres (ref.30) 

n Bn/B~-l 

2 1·0 
3 0'6250 
4 0'286950 
5 0·110252 ± 0·000001 
6 0·0389 ± 0·0004 

7 0·0137 ± 0·0006 

8 0·0045G 

9 0·0015G 

10 0·0005G 

G Probable value, b recommended value; see Eq. (4.93). 
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4·0 
10·0 
18·3648 
28'2245 ± 0·0003 
39·83 ± 0·41 
(39·93)b 
56·1 ± 2·5 
(53·5)b 
74 
98 

131 
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By inserting the volume element (2.9) into (3.7) and by taking into consideration 
that 112 outside the average volume -rCI +C2 of the cores depends only on the distance 
Ie we get 

(3.26) 

For hard convex bodies 112 = -1 for Ie < ~1 + ~2 == (J and 112 = 0 otherwise. 
Then 

i.e. B2 equals one half of the average excluded volume, defined by the average com­
mon volume of a pair of convex bodies in contact. This result is an extension of Eq. 
(3.16) for hard spheres. By using relation (2.14), the co-volume -r 1 +2 in (3.27) can 
be expressed by means of the volume of the convex body, 

B2 = 1/ + 91/9' = (1 + 3ex) 1/ , (3.28) 

where ex is a parameter of nonsphericity, 

ex = 91/9'/31/ • (3.29) 

(As we deal in this section only with pure fluids, we have dropped the subscripts at 
the symbols for the geometric functionals.) For spheres ex = 1 while for all other 
convex bodies ex > 1. Eq. (3.28) expresses an important result, the so called con­
formity of convex bodies: Two convex body models with the same ex have the same 
reduced second virial coefficient regardless of their actual shape. 

General geometrical considerations have been extended also to the third virial 
coefficient, but in this case they yield only lower and upper bounds for B3 • Kihara 
and Miyoshi47 considered the case of three particles with one being much larger 
than the other two, and the case of three spheres of difterent diameters. From ex­
amining the volume 1/ 1 + 2 ... 3 they have come to a result 

B3 = 1/2 + 291/9'1/ + G/12rr. = (1 + 6ex) "I,~2 + Gj12rr., (3.30) 

where G must satisfy the following inequality: 

(3.31) 

From the computational point of view, handling with the convex objects is in no 
way simple. The models most closely related to spheres are prolate and oblate ellip­
soids3s •48 (called spheroids by some authors49), i.e. the bodies of revolution which 
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have their origin in simple planar curves. For all other bodies all geometrical considera­
tions reduce to finding the shortest distance between two cores of the bodies and this 
geometrical problem considerably limits our possibilities to consider various shapes. 
The simplest, and therefore most intensively studied, is the problem of two 
rods32.50-53 (i.e. the hard cores of prolate spherocylinders). Next one is the problem 
of two infinitely thin platelets33 ,34,54-56 (hard cores of oblate spherocylinders) 
and these are the only shapes, with exception of those in ref. 57, for which exact 
numerical computations have been performed so far. The last class of exactly trac­
table bodies is that of polyhedrons as e.g. tetrahedron, cube, etc. From all such 
shapes only the latter has been considered for evaluation of the virial coefficients57. 
Other convex bodies do not seem manageable in a rigorous way. 

One can view a convex body as an envelope to an infinite number of hard spheres 
whose centres form the core of the body. For computational purposes one can 
therefore choose a finite number, N, of spheres and transform the original problem 
to a simple problem of N 2 spheres. To make this approximation accurate, N cannot 
be small which leads to slowing down significantly all computations. Nezbeda 
and Boublik57 showed that at least nine spheres must be considered to accurately 
approximate the spherocylinder with 'l' = 3. They also computed in this way the 
virial coefficients of drop-like and diamond-like bodies57. 

The virial coefficients of all convex models considered so far are compiled in 
Tables III and IV. For some models the computations were performed by several 
authors and these are in most cases in mutual agreement. In these cases only the 
most reliable and accurate values are listed. An exception is the model of oblate 
spherocylinders, for which two new independent sets of results are available33 .34 

but which disagree at high nonsphericities. Nezbeda34 has recently analyzed in detail 
both sets by using various tests but has not been able to draw a definite conclusion 
about their accuracy and to explain the discrepancy. 

The CB models listed in Tables III and IV may be roughly divided into two groups: 
1) realistic models (characterized by a low or moderate nonsphericity) which may 
mimic real molecules and 2) purely academic models (usually with extreme non­
sphericity) considered only for theoretical examination of certain trends and non­
sphericity dependences. 

From examining Table III it is immediately seen that the higher virial coefficients 
for different models with the same IX disagree (compare e.g. prolate and oblate 
ellipsoids) and the difference becomes more pronounced with increasing IX. It is 
not therefore possible to extend exactly the idea of conformity of the CB models 
(expressed by Eq. (3.28) beyond the low density range. However, the assumption 
of the conformity may yet be a useful approximation for realistic models. 

Due to the inequality 1 = IXHS < IXnonsphericab the 2nd virial coefficient of the HS 
fluid provides a lower bound for Bl'Y and the same seems to hold true also for 
higher virial coefficients of realistic models; due to the broken conformity nothing 
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TABLBm 

Virial coefficients of convex body models 

Parameter B2/r B3/r2 B4/r3 Bs/r4 Ref. 

Prolate spherocylinders 

l' 
1'2 4'046 10'21 ± 0'05 18'80 ± 0'30 57 
1-4 4·150 10'64 ± 0'05 19'26 ± 0'30 32 
1-6 4'284 11-18 ± 0'05 20'50 ± 0'35 57 
1-8 4'436 11-84 ± 0'06 21'50 ± 0'30 32 
2'0 4'600 12-34 ± 0·03 22'50 ± 0'23 31'9 ± 1'3 53 
2'5 5'038 14'30 ± 0-07 26'06 ± 0'65 50, 52 
3'0 5'500 16'20 ± 0'03 28'00 ± 0'28 36·8 ± 1'5 53 
4'0 6'455 20·43 ± 0'04 31'90 ± 0'32 39'7 ± 1-6 53 
5'0 7-429 24'92 ± 0'06 33'10 ± 0'33 39'9 ± 1-6 53 
6'0 8'412 29'68 ± 0'06 31-60 ± 0'32 63'0 ± 2'5 53 

11'0 13-375 -38'7 ±1-6 53 

Prolate ellipsoids of revolution 

..1. 

1'25 4'053 10'18 ± 0'05 35 
1'50 4·178 10'69 ± 0'03 19'73 ± 0'20 29·88 ± 0'60 48 
2'00 4'538 12'09 ± 0'03 21'56 ± 0'22 31'87 ± 0'62 48 
2'75 5'211 14'81 ± 0'07 35 
3'00 5-454 15-85 ± 0'08 35 
5'00 7'552 25'23 ± 0·13 35 

10'00 13-191 55·21 ± 0'28 35 

Diamond 

l' 
2'568 5'500 16'21 ± 0'05 28'00 ± 0·40 57 

Drop 

2'347 5'500 15-97 ± 0'05 26'00 ± 0·40 57 

Oblate spherocylinders 

qJ(=l'-l) 

1'0 4'387 11'65 ± 0'03 21-65 ± 0·13 32'38 ± 0'51 33 
11-66 ± 0'05 21'79 ± 0'05 34 

1'5 4·702 13'08 ± 0'02 24'76 ± 0'13 35·79 ± 0'53 33 
13'09 ± 0'04 24'51 ± 0'30 34 

2'0 5'044 14'79 ± 0'04 28'22 ± 0'24 39'02 ± 0'64 33 
14'73 ± 0'05 27'78 ± 0·40 34 

2'636 5'500 17'07 ± 0'07 31'90 ± 0'60 57 
3'0 5'767 18'65 ± 0·04 36'35 ± 0'25 43-90 ± 0'72 33 

18·29 ± 0·10 32-44 ± 0'65 34 
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TABLE III 

(Continued) 

Parameter Bz/"f" B3/"f"Z B41"r3 Bs/"f"4 Ref. 

Oblate ellipsoids of revolution 
;. 

0'80 4'053 10'25 ± 0'03 35 
0'6667 4·178 10'72 ± 0'03 19'62 ± 0'20 29'51 ± 0'60 48 
0'50 4'538 12'30 ± 0'03 22-81 ± 0'23 33'18 ± 0'66 48 
0'3636 5'211 15-49 ± 0'08 35 
0'3333 5-454 16'74 ± 0'08 35 
0'20 7'552 29'82 ± 0·15 35 
0'10 13'191 84'15 ± 0'42 35 

Cube 

a 5'500 18'33 ± 0·15 42'00 ± 0·80 57 

can be said about B;j-yl-l for two models at the same 0(. If no upper bound is im­
posed on 0(, one can observe an interesting behaviour of higher virial coefficients 
with increasing nonsphericity. The 4th virial coefficient of prolate spherocylinders 
comes through a maximum beyond which it decreases with increasing y. Monson 
arid RigbyS3 analysed in detail contributions of individual graphs to B4 and found 
that it becomes negative at y ~ 9. Also the shape dependence of Bs for the same 
system is rather surprising. If Bs is reduced by -y4, the changes are not very smooth. 
However, if Bs is reduced by B1 then Bs is found to be a smoothly decreasing function 
of y with fast decaying differences as y increases. This behaviour is in contrast with 
the negative value of Bs for infinitely thin discs (a system with infinite nonsphericity) 
found by Eppenga and Frenkelss ,s6. 

TABLE IV 

Virial coefficients of infinitely thin platelets (discs) of diameter a (ref. S6) 

n 

2 
3 
4 
5 

n2 /16 
0'1692 ± 0'0001 
0'00480 ± 0'00009 

-0'00867 ± 0'00016 
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3.2.4. Fused-Hard-Sphere Models 

Unlike the convex body models, the FHS models do not possess such a generality 
and almost every model must be treated independently. 

The second vi rial coefficient of homonuclear dumbells was first obtained analytical­
ly by Isihara28 by a direct integration of Eq. (3.9). Quite recently Wertheim58 has 
proposed a decomposition of the molecular Mayer function f(1, 2) into certain 
site-site functions Fall(1, 2) and managed29 to evaluate analytically all graphs to get 
the average Boltzmann factor, <e(1,2», and consequently, also B2 for general 
diatomics and linear symmetric triatomics with a A ~ ae. These are the only exact 
analytical results for the FHS models. In the following the Wertheim's method is 
briefly outlined. 

Starting from expression (2.2), placing the reference points within each molecule 
at the centers of spheres A, (aA ~ aB)' and performing a simple manipulation with 
site-site functions fall (Jail = eall - 1) and eall we can write for the diatomics: 

f(1, 2) = fAA(1, 2) + eAA{1, 2)fAB(1, 2) + eBA(1, 2)fBA(1, 2) + 
+ eAA(1, 2)fAD(1, 2)fBA(1, 2) + eAA(1, 2) eABO, 2) enA(1, 2)fBB(1, 2) == 

== FAA + FAD + FBA + FBB,o + FBB,l' 

Let us denote by Falz) an unweighted angle average of Fall, 2), 

and 

(3.32) 

(3.33) 

(3.34) 

Then the average Mayer function and the second virial coefficients for the diatomics 
are given by 

(3.35) 

(3.36) 

By realizing that eall == 0 when spheres IX and P overlap and eall == 1 when they 
do not, evaluation of all terms in (3.35) is straightforward (see Fig. 4) except for 
the last one which contains the fBs-bond. It holds: 

- 1 for 0 < z < a A 
FAA(Z) = o for Z > aA 

(3.37) 
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(3.38) 

) () -(G+L-z)(G-L+z)/4Lz, uA<z<G+L 
FAB(Z = FBA Z = o otherwise 

(3.39) 

(3.40) 

where U = L - (uA - uB)/2 and G = (UA + uB)/2. 
For U = 0 the B-sphere merges completely into the A-sphere and has no longer 
any effect. Further, 

[(G + L- z){G - L+ z)/4Lz]2, UA < z < G + L 
FBB.O(Z) = (3.41) 

o otherwise 

A merit of decomposition (3.32) is in that it makes the most important contribu­
tions to <J(l, 2» the most tractable: It has been shown that the easy terms IAA and 
lAB are dominant under all conditions. The most difficult term, FBB, is only moderate 
for the largest values of U and declines rapidly with decreasing U so that it may be, 
eventually, neglected. Its exact analytical evaluation has been carried through by 
Wertheim29 using tetrahedral geometry. The final result is (for details see ref.29): 

IBB,l = U3 [uAG/3 + UG/4 + U2 j20J/4L2 + 

+ [- V(u! + ai + 2G2 + 2L2 )/15 + QA(n - CPA) + 

+ QA(n - CPB) - 2QoCPG - 2QLCPLJ/4ni! . (3.43) 

Here V and cP are certain geometric quantities which must be evaluated for the 
tetrahedron, where each sphere is tangent to both spheres of the other molecule. 
It means that the tetrahedron has sides U A> UB' G, and L. V is six times the volume 
of the tetrahedron and is given by 

(3.44) 

cPtzp is the internal angle between two face triangles aPr and apo (a, p, .. , label the 
tetrahedron vertices), 

(3.45) 

Atzpy is twice the area of the face triangle aPr and Ptzp = (rtzy x rtzp) (rtzp x r...,). 
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Q are auxilliary quantities given by 

(3.46) 

For a special model of linear triatomics with (Ie ;?; (I A (where C refers to the 
central sphere) and A - C separation L, the second virial coefficient is given by 
a formula similar to (3.36), 

(3.47) 

with the same I coefficients as for diatomics. 

The virial coeffi:.:ient of homonuclear dum bells and linear polyatomics can be 
exactly calculated also by a method proposed by BoubHk59 • The method closely 
follows the approach for hard convex bodies and is outlined therefore in the next 
section. 

The virial coefficients of the FHS models are compiled in Table V. Unlike the CB, 
discussion on these coefficients is more difficult because of nonexistence of a "param­
eter of nonsphericity". 

Homonuclear diatomics closely resemble prolate spherocylinders and thus the 
same conclusions hold for them, too. All other models are defined by at least two 
parameters and are therefore incomparable. An interesting dependence of Bi on the 
valence angle w is exhibited by nonlinear triatomics: the 2nd virial coefficient is 
independent of the valency angle for angles greater than a certain wC, B3 "1"2 versus w 
dependence follows that of the volume of the molecule on w, and B4"1"3 has a pro­
nounced maximum for a boomerang-like shape (for details see the original paper60). 
For other FHS models the body of data available does not allow us to discuss the 
parameter dependence of Bi and to draw general conclusions. 

3.3. Virial Coefficients: Approximate Results 

Any equation of state of fluids can be expanded in powers of density and the ex­
pansion coefficients provide then estimates of the vi rial coefficients. This type of 
approximation of the virial coefficients is considered in Section 4, where we deal 
with equations of state. In this section we consider real approximate integrations 
in Eqs (3.7), (3.11), ... and semi-empirical methods. 
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TABLE V 

Virial coefficients of fused-hard-sphere models 

Parameters B2/"f/" B3/"f/"2 B4/"f/"3 BS/1'"4 Ref. 

Homonuclear diatomics 
L 
0'05 4'004 10'01 ± 0'03 18-40 ± 0'08 70 
0·10 4'014 10·13 ± 0'03 18'84 ± 0'30 70 
0'20 4'055 10'23 ± 0'05 19'43 ± 0'35 51 
0'30 4'132 10'58 ± 0'03 19'63 ± 0'20 34 
0'40 4'212 10'94 ± 0'05 20'35 ± 0'30 32 
0'60 4'474 12·13 ± 0·03 23'10 ± 0'07 35'58 ± 0·25 71 
0'75 4·753 13'52 ± 0'05 26·26 ± 0'30 70 
0'80 4'866 14'04 ± 0'08 27-61 ± 0'50 51 
1'00 5-444 17'04 ± 0'06 34'52 ± 0'35 52-22 ± 1'05 34,72 

Heteronuclear diatomics 
L O'B 
0'3333 0·6667 4'096 10'40 ± 0·10 19'31 ± 0'20 73 
0'50 0'5555 4'252 11-12 ± 0·11 20'91 ± 0'21 73 
0'50 0'6667 4'320 11-48 ± 0·12 21-61 ± 0'22 33'09 ± 0'33 7'!-
0'50 0'8333 4'348 11'51 ± 0·12 21'70 ± 0'22 73 
0'575 0·15 4·115 10·50 ± 0·15 19'70 ± 0'60 60 
0'6250 0'50 4'506 12'34 ± 0'10 23-84 ± 0'25 34 
0'6667 0'6667 4'648 12-92 ± 0·13 24'80 ± 0'25 73 
0'80 0'60 5'079 15'20 ± 0'23 30'80 ± 0·92 60 

Linear symmetric triatomics 
L O'A 

0'575 0·15 4'227 11'10 ± 0·16 21'00 ± 0'63 60 
0'80 0'60 6'093 20'50 ± 0'31 42'20 ± 1·27 60 
0'80 1'00 5-812 18·50 ± 0·15 35'99 ± 0'50 34 
1'00 1'00 6'85,\ 24·50 ± 0·37 48·90 ± 1-47 60 
1'0467 H669 4·8408 74 

Tetrahedral penta-atomics 

0'5206 1-0294 5'024 ± 0·005 15'26 ± 0·03 32'29 ± 0·16 63 

Non-linear symmetric triatomics L = (0' A + 1)/2 

O'A co, deg 
0'15 15 4·155 ± 0'002 60 

30 4·199 ± 0'002 11'00 ± 0·16 20·50 ± 0·61 60 
45 4'222 ± 0'002 60 
60 4·228 ± 0'002 IHO ± 0'16 21'10 ± 0·63 60 
90 4·227 ± 0·002 ]1-10 ± 0·16 20'90 ± 0'63 60 

120 4'231 ± 0'002 IHO ± 0·16 20'80 ± 0'63 60 
150 4·227 ± 0'002 11·00 ± 0·16 20'60 ± 0'62 60 
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TABLE V 

(Continued) 

B2/"f/" B3/"f/"2 B4/"f/"2 Ref. 

0'60 15 5·121 ± 0'008 60 
30 5'235 ± 0'008 16'20 ± 0'24 32-80 ± 0'98 60 
45 5-472 ± 0'008 17-60 ± 0'26 37'90± 1-14 60 
65 5-828 ± 0'009 19'80 ± 0'30 44'10 ± 1'32 60 
90 6'028 ± 0'009 20'90 ± 0'31 45'70 ± 1'37 60 

105 6'050 ± 0'009 20·80 ± 0'20 44'80 ± 0'90 69 
115 6'075 ± 0'009 60 
120 6'084 ± 0'009 20'90 ± 0'30 45'2 ± 1'35 60 
140 6'086 ± 0'009 60 
150 6'084 ± 0'009 20'50 ± 0'30 43'5 ± 1'30 60 
160 6'084 ± 0'009 60 

1'0 30 5'320 ± 0'013 16'60 ± 0'25 34'50 ± 1·04 60 
60 5-859 ± 0'015 20'00 ± 0·30 45·20 ± 1'36 60 
90 6'519 ± 0'015 24'30 ± 0'35 57'50 ± 1'73 60 

120 6'782 ± 0'017 25'10 ± 0'38 53-60 ± 1-61 60 
150 6'824 ± 0'017 24'60 ± 0'37 50'70 ± 1'52 60 

L= 0'5 

1'0 90 4'520 ± 0'010 12-38 ± 0·10 24'38 ± 0'35 34 

Because of the complexity of the higher virial coefficients, attempts to perform 
integrations in Eqs (3.7) ... have focused on the second virial coefficient mainly. 
This coefficient is known exactly for all convex body models and one evident pos­
sibility is therefore to extend this result to the FHS models. The other way is to 
decompose the integral into several terms and to neglect the most difficult ones, 
provided they do not contribute significantly to the total value. 

For many FHS models the difference between them and the corresponding convex 
bodies is nearly negligible. Boublik59 studied a general, homogeneous (i.e. 0',. = O'~ 
for all ex, ~) linear FHS molecule; its surface area, f/, is just equal to the surface 
area of the corresponding spherocylinder (with the rod-length, L, equal to the largest 
site-site span), whereas the volume of the FHS model is equal to that of the sphero­
cylinder lessened by factor nL30'/12 in the case of diatomics and several such factors 
for polyatomics. Setting ~ equal to that of the corresponding spherocylinder, all 
the Steiner relations (for single bodies) are fulfilled also by the FHS models. 

The average volume -r1+2 of two FHS bodies, and thus twice the second virial 
coefficient, is 

2B2 = -r1+2 = 2(-r + ~f/) - i\v, (3.48) 
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where Au is the volume of two "pyramids" formed by spheres of radii a in the 
corners of the rhomboid with the base L2 sin T (where T determines the mutual 
orientation of the FHS body axes). For a given T the volume of the pyramid can be 
expressed analytically and the Au then follows by averaging over all T. 

Much simpler is the use of a semi empirical expression 

(3.49) 

where 

(3.50) 

This expression yields surprisingly good estimate of Au. Owing to the fact that Au 
itself is very small in comparison with 1/ and qt!/" the prediction of B2 by using 
Eq. (3.49) is very accurate (for details see ref. 59). 

Boublik and Nezbeda61 used originally the above method for estimating the 
properties of the homonuclear dumbell fluid by neglecting completely the volume 
Au. The result for homonuclear dumbells 

(3.51) 

is quite accurate (see Table VI). Since for linear models the approximation Au ~ 0 
is well justified, similarly good results are obtained for heteronuclear dumbells62, 

Bi'f' = 1 + [a8 + 1 + L + (1 - aBf/4L] [-H1 + ai) + (aBa+ + a_)] , 
[(1 + a~) + 3(uia+ + a_) - 4(a! + a~)] 

where 

a± = lL ± (ui - l)/SL 

and for symmetric linear triatomics, 

(3.52) 

(3.53) 

(3.54) 

Neglecting Au in Eq. (3.48) makes this equation identical to that for CB, cf. Eq. 
(3.28). It is possible therefore to evaluate (at least formally) B2 of any FHS model 
similarly as for CB models, i.e. using a parameter of nonsphericity CtFHS ' CtFHS = 

= ~!/'/31/, where 1/' and!/' are the actual values of the FHS model and ~ is given 
by an appropriately defined associated CB. This approximation has been applied 
also to non-linear FHS models60 •63 and even in these cases the results are in a quite 
good agreement with the exact data (see Table VI). 

Approximate integration for diatomics may start with factorization (3.32). The 
most difficult but at the same time the least important term is that containing the 
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TABLE VI 

Comparison of the convex-body-Iike approximation for B2 of FHS models (Eq. (3.48) with 
Av = 0) with exact results 

Parameters 

L 

0·2 
0'4 
0'6 
0'8 
1'0 

L 

0'50 
0'50 
0·625 
0'6667 
0'80 

L 
0'575 
0·8 

1'0 

LAC 
0·5206 

1'00 

Eq. (3.48) exact 

Homonuc\ear diatomics 

4'056 
4'214 
4'482 
4'889 
5'500 

Heteronuclear diatomics 

O"B 

0'5556 4'280 
0'6667 4'333 
0'50 4'505 
0'6667 4'694 
0'60 5-110 

Linear symmetric triatomics 

O"A 

0'15 4'236 
0'6 6'225 
1·0 5-861 
1'0 7'000 

Tetrahedral penta-atomics 

O"A 

1'0294 5·152 

Nonlinear symmetric triatomics 

L = (O"A + 1)/2 
()) 

30 5-452 
45 5'787 
90 6'078 

140 6·222 
30 5'546 
60 6'250 
90 6'561 

120 6·799 

4'055 
4'212 
4·474 
4'866 
5-444 

4'252 
4'320 
4'506 
4'648 
5·079 

4·227 
6'093 
5-812 
6'853 

5'024 

5·235 
5-472 
6'028 
6·086 
5'320 
5-859 
6'519 
6·782 
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B-B bond. At any given separation rAA the setting of FBB,I to 0 is a very good 
approximation. However, due to accumulation of errors during the integration over 
drAA the final result is rather inaccurate64• Better seems to start from the equation 
of state, i.e. to use the two-point representation, where the integrals are evaluated 
only at one value of r AA' The second virial coefficient assumes then the form (for 
details see ref. B) 

(3.55) 

where "Ytz + fJ is the average free volume associated with pair a-p and is given by 
the diagram 

Here r AA = a AA and •..... ....• denotes a certain function, different from both 
e- and I-bonds. 

Nezbeda15 evaluated this diagram by neglecting the eBB bond and obtained for 
homonuclear dumbells the expression 

(3.56) 

The same method has been also applied to heteronuclear dumbells62 with the result 
slightly inferior to the CB approximation (3.52). On the other hand, an advantage 
of this approach is that it is quite general and may be used for estimating higher 
order graphs for both the virial coefficients and correlation functions64• 

Another approximate method related to the CB results is that which employs 
parameters of nonsphericity to estimate higher vi rial coefficients. As it has been 
shown above, the third virial coefficient of hard CB is given by expression (3.30), 
with known lower and upper bounds for G, Eq. (3.31). 

Boublik65 has shown that assuming 

(3.57) 

the third virial coefficient can be also expressed in terms of the single parameter IX, 

IX = rJl.CJ'/3"Y, (ef. Eq. (3.28». From Eq. (3.30) it follows 

(3.58) 

This expression is identical to that of Gibbons6b, originally derived within the scaled 
particle theory, ef. Section 4.5., Eq. (3.58) reduces in the case of hard spheres (for 
which IX = 1) to the correct value B3 ,HS/"Y2 = to. 
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The only information available on the fourth vi rial coefficient of CB is the knowl­
edge of B4 for the special case of hard spheres. Considering a similar special case for 
four CB, as Kihara and Miyoshi considered for three particles, it can be concluded65 

that B4 should include terms "1/3 and "1/2 [/!Jll. A simple approximation for B~B 
in terms of powers of oc only (consistent with an integer estimate of B4 •HS value, 
B4 •HS = 18) has the form 

(3.59) 

Comparison of the third virial coefficient, calculated for a variety of CB from (3.58) 
is given in Table VII. In the same table the values obtained from the expression 
proposed for B3 by Naumann and Leland67 are also listed. They assumed the quantity 
G to be given by its lower bound, i.e. 

G = [/3. (3.60) 

Then, after combining it with the HS value, they obtained 

(3.61) 

where r is a second parameter (called "needleness") characterizing the shape of CB, 

(3.62) 

As 47t91 2 ~ fj), r ~ 1 (similarly as oc) and Eq. (3.61) therefore yields - in contrast 
to (3.58) - always lower values of B J with increasing nonsphericity and thus better 
agreement for prolate spherocylinders at the highest values of oc, but worse predic­
tions for all the other CB, see Table V. 

The idea that the higher CB virial coefficients depend on more than one parameter 
(oc) is not new. Probably first was this idea formulated by Rigby32 who, however, 
offered no quantitative relationship. Unfortunately, the expression of the virial 
coefficients in terms of oc and r does not bring any substantial improvement over 
the one-parameter relation. 

Two last methods that we consider in this section make use of certain recursion 
formulas allowing us to estimate B j by means of B i, j < i. 

Studying the asymptotic behaviour of the irreducible cluster integrals20 p" for 
k -> 00, Tsykalo and Selevanyuk68 found a recursion formula 

[Pk+l/p~k+1)/ky p~k+2)k = Pk+2 (3.63) 

A = (k + 2)2/3 - k- 1 / 3(k + 2) 
(k + 1)2/3 - k- 1 / 3(k + 1) 
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TABLE VII 

Comparison of the third virial coefficient, B3/"Y2, of convex bodies calculated from Eqs (3.58) 
and (3.61) with exact data 

Parameter IX r Eq. (3.58) Eq. (3.61) Exact 

Prolate spherocylinders 
y 

1-4 1'050 1'029 10'61 10'56 10'64 
1'6 1'095 1-056 11·16 11-07 11'18 
2'0 1'200 1'125 12'52 12'28 12'34 
2'5 1-346 1'225 14'51 14'01 14'30 
3'0 1'500 1'333 16·75 15'91 16'20 

Prolate ellipsoids of revolution 

A-

HO 1'059 1'035 10'72 10'68 10'69 
2'00 1·179 1·114 12'25 12'04 12'09 
2·75 1-404 1'275 15-33 14'69 14·81 
3'00 1-485 1'335 16'52 15'69 15'85 
5'00 2'184 J.871 28'41 25'08 25'23 

Diamond (uD = 0·2) 

y = 2'568 1'500 1-422 16'75 15'75 16'21 

Drop (uD = 0'2) 

y = 2'347 1'500 1·422 16'75 15'75 15'97 

Oblate spherocylinders 
((J 

1'0 1·129 1'038 IHO !l'53 !l'65 
1'5 1'234 1'059 12'97 IN5 13'08 
2'0 1-348 1'076 14'54 14'35 14'79 

14'73 
2'636 1'500 1'094 16'75 16'46 17'07 
3'0 1'589 1·103 18·11 17'76 18'65 

18'29 

Oblate ellipsoids of revolution 

). 

0'6667 1-059 1'024 10'72 10'68 10'72 
0'50 1·179 1'058 12·25 12·14 12'26 
0'36~6 1'404 1·101 15·33 15'06 15'49 
0'3333 1'485 I· !l2 16'52 16·19 16'74 
0·20 2·184 1'167 28'41 27'39 29'82 

Collection Czechoslovak Chern. Commun. [Vol. 511 [1986) 



2332 

TABLE VII 

(Continued) 

Parameter 

a 

Cube 

I'Soo l-l78 

Boublik, Nezbeda: 

Eq. (3.58) Eq. (3.61) Exact 

16'75 16·24 18·33 

which has two interesting features: (i) its accuracy should increase with increasing k, 
and (ii) it is independent of the potential model. For hard spheres Eq. (3.63) predicts 
Bs with the accuracy of about 3 percent and B6 of about 2·7 percent. Nezbeda34 

nve s tigated in detail the applicability of Eq. (3.63) for Bs, 

(3.64) 

and has come to the conclusion that this equation is a reliable tool for estimating 
the fifth virial coefficient of any hard body model of not too extreme nonsphericity 
(see Table VIII). 

The other usuful result resembling recursion formulas are the relations of Mali­
jevsky and Labik31 for the fourth and fifth viTial coefficients: 

B! = B!.HS + 1·S14(B; - B;,HS) + t·842(Bj - Bj,HS)2 

B~ = B~,HS + 1·013(Bj - Bj,HS) + 2'616(Bj - Bj.HS)2 , 

(3.65) 

( 3.66) 

where Bi = BdB~-l. These relations were found by purely empirical means but 
work surprisingly well. It can be shown that (3.65) predicts accurately B4 even in 
such cases where the derivative of B4 with respect to the nonsphericity parameter 
changes its sign. Eq. (3.66) performs better .than Eq. (3.64) but predictions must be 
made with caution because it is based on a relatively small body of data only. One 
feature is common to both (3.65) and (3.66): they are sensitive to the accuracy 
of the third vi rial coefficient. An error of 1 per cent in B 3 may give rise to errors 
up to 6 percent in B4 and 7 percent in Bs. 

Tables VI through VIII demonstrate potentialities of the approximate methods 
currently available for evaluating the virial coefficients of hard body fluids. We only 
remind that these are "direct" estimates of the coefficients without any relation to 
equations of state. 

The convex-body-like approximation for B2 of the FHS models is best suited 
for linear models for which it is also theoretically justified. (Unfortunately, the exact 
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analytical expressions are available for these models.) It is quite accurate for di­
atomics and still good for triatomics with accuracy better than 3 per cent. Its formal 
extention to non-linear models makes it possible to obtain easily a reasonable esti­
mate of B2 for any FHS model. The worst results are obtained for strongly hetero­
nuclear and non-linear models with discrepancy up to 6 per cent. 

For B3 of the CB models there seems to be no great difference between the results 
given by one- and two-parameter expressions (Eqs (3.58) and (3.61)) provided that 
('J. is not too large. Discrepancy starts appearing at greater nonsphericities with 
Eq. (3.61) being slightly better for prolate and Eq. (3.58) for oblate shapes. Eq. 
(3.58) may be also used for the FHS models with appropriately defined ('J.FHS but this 

TASLEVIII 

Comparison of Bs given by recursion formula (3.64) with exact results 

Body Bsl'·r 
Body parameter 

Eq. (3.64) exact 

Spheres 27'5 28·2 

Prolate y = 2 32-8 31'9 
spherocylinders y= 3 37-4 36'8 

y= 4 37'0 3.9'7 
y= 5 31'2 39'9 
y= 6 22'6 63'0 

Prolate A. = 1'5 29'5 29'9 
ellipsoids A. O~ 2'0 3.0'6 31'9 

Homonuclear L= 0'6 35'5 35-6 
diatomics L= ),0 55'3 52'2 

Heteronuc1ear L = 0'5 32'9 33'\ 
diatomics as = 0'6667 

Oblate Ip= \·0 32'4 32'4 
spherocylinders 32-8 

Ip = \'5 37'5 
36'6 

35'8 

Ip= 2'0 42'7 39'0 
41·4 

Ip= 3'0 55'2 43'9 
44'2 

Oblate A. = 0'6667 29'0 29'5 
ellipsoids ). = 0'50 33·9 33-2 
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way is closely linked to equations of state and is discussed therefore in the next 
section. 

If the second and third virial coefficients are known, then the correlation formulas 
(3.65) and (3.66) make it possible to calculate quite accurately both B4 and Bs 
regardless of the model considered. The recursion formula (3.63) provides also 
a reasonable estimate of B5 for realistic models. 

4. EQUATIONS OF STATE OF PURE FLUIDS 

Besides the virial expansion, Eq. (3.1), there are several other routes to obtain 
the equation of state. These methods can be divided, roughly, into two groups: 
Methods devised primarily for EOS and more general methods enabling one to 
calculate also the structure of the fluid. The former methods usually yield an EOS 
in a closed analytical form, which is undoubtedly their advantage. The latter methods 
are based on correlation functions and - with the only exception of the Percus­
- Yevick theory for the HS fluid - an EOS can be obtained only by numerical com­
putations. Their merit is thus mainly methodological with little practical importance. 

When discussing various methods and results we adopt a "mixed" approach 
focusing alternatively on methods and systems for the following reasons. First, 
lattice theories seem to have passed their momentum and despite a few new recent 
attempts their impact on nonspherical HB fluid theories is practically zero; they are 
therefore discussed separately. Secondly, the HS fluid has a prominent position 
among all HB fluids: nearly all methods available at present were devised originally 
for the HS fluid and only then extended to nonspherical body fluids. It seems there­
fore logical to talk first about the HS fluid and then about the nonspherical body ones. 

4.1. Basic Relations 

Within the canonical NVT ensemble it holds: 

(4.1) 

where ZN is the N-particle configuration integral (3.3). One possible way towards 
obtaining PP is to estimate directly the configuration integral and this is the way 
followed by lattice theories (see Section 4.3.). If the structure of the fluid is described 
by means of correlation functions and pairwise additivity of the potential is assumed 
(which is true for all HB fluids), then from Eq. (4.1) one can get 2 

PP/(l == Z = 1 - - rl2 gel, 2) dr12 dco1dC02' pQ f[ GU(t,2)J 
6 Gr 12 

(4.2) 

Collection Czechoslovak Chern. Commun. [Vol. 51] [1_] 



P-V-TBehaviour of Hard Body Fluids 2335 

where r l2 is the vector formed by reference points, ol denotes orientation, and g{1, 2) 
is the pair correlation function (radial distribution function) defined generally by 

g(l, 2) = ... exp [-PUN(l, ... N)J d(3) ... d(N) , N(N - 1) f f 
ZNll 2 

(4.3) 

Similarly, one can write in terms of gel, 2, ~) also the chemical potential, JI.. It holds 22 

P(JI. - !!*) == PJl.res = Pll d~ - gel, 2, e) dr12 dOlI dOl2 , fb f au 
a ae 

(4.4) 

where J1.* is the chemical potential of the perfect gas and e is a coupling parameter 
characterizing a gradual inclusion of another particle to the given system: for e = a 

we have the original system of N particles while for ~ = b the additional particle is 
equivalent to all other particles. 

For discontinuous potentials gel, 2) is also discontinuous. A correlation function 
continuous even for such potentials is the background correlation function, y, 
defined as 

y(t, 2) = exp [pu(l, 2)J gel, 2). (4.5) 

For hard spheres y(l, 2) = y(r), gel, 2) = g(r) and g(r) du(r)jdr = -kTi5(r - a). 
,.\'(1'). Eq. (4.2) assumes thus a very simple form, 

(4.6) 

where '1 is the packing fraction, '1 = ll"Y. To calculate the equation of state (EOS) 
of the hard sphere fluid one thus needs only the contact value of the radial distribu­
tion function. The situation is not so simple for nonspherical bodies whose pair 
correlation function gel, 2) depends on both the separation and orientation of the 
particles. However, Eq. (4.2) can be considerably simplified by employing an ap­
propirate coordinate system. 

For convex bodies u = u(s) and the appropriate Jacobian of transformation is 
given by (2.9). Further, 

(4.7) 

Performing coordinate transformation (2.9) and taking into account (4.7) one 
finds (for details see ref. 7S) 

(4.8) 
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The average quantities <A) and gay are defined by 

<A) gay(s) = 1 fA9(s, 8, cp, (012) d9' 1+5+2 dcoll , (4.9) 
9'1+5+1 

subscript c denotes values at contact (i.e. for s = u), and A is an arbitrary quantity. 
An alternative to (4.8) is an expression employing a function ~ay( ~), 

(4.10) 

whose introduction is motivated by behaviour of J1. for (} -+ 0 (refs14 •76). Since 

(4.11) 

we get 

(4.12) 

For FHS models u(1, 2) = LUII/J(rll/J) and so the site-centred coordinate system is 
a natural choice. Similarly to (4.7) we have (for details see refs 1S .69) 

(4.13) 

where vil/J = rll/J/lrll/JI so that the EOS can be expressed as follows: 

(4.14) 

Here ull/J = (ull + u/J)/2 and CII/J is the average site-site correlation function given 
by an unweighted angle-average of the full pair correlation function g(l, 2) under 
the constraint rll/J = const, 

(4.15) 

Eq. (4.14) is completely general and holds for any FHS model. A FHS counterpart 
of Eq. (4.12) can also be derived but not in such a general form. For instance, for 
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homonuclear dumbells we can write1S 

(4.16) 

where fPaP is a certain function defined by dumbell's geometry (for details see ref. 1 5). 
Eqs (4.12) and (4.16) are relevant for the scaled particle theory (see Section 4.4.2.) 

which addresses ~(~). On the other hand, Eqs (4.8) and (4.14) are well suited for 
evaluating {3p/Q from simulations but are not the only possible forms. Similar but 
rather cumbersome expressions for the FHS fluids have been also derived by Freasier 
and coworkers 72.77, Aviram and coworkers 78, and Bearman 79. Another possibility 
(for convex bodies) is to employ a contact function49.8o-82. A novel method to 
compute the pressure in an NVT ensemble has been proposed recently by Eppenga 
and Frenkels6 • 

General theoretical approaches aim at evaluating the full pair correlation gel, 2) 
either via a perturbation method or by determining its spherical harmonic expansion 
coefficients83 gN( I ).N(2)' 

gN(I).N(2) == gjjk.lmn(r) = 8:2 fg(l, 2) DN(I)D~(2) deo! deo2 . (4.17) 

Then 

(4.18) 

Here DN(eo) arc orthogonal functions (Wiegner rotational matrices) spanning the 
orientational space and asterisk denotes complex conjugate. Due to a discontinuous 
nature of the HB potential the series in (4.18) is poorly convergent for these fluids 
which is a disadvantage of the expansion. Fortunately, one practically never needs 
the full pair correlation function since measurable quantities may be expressed 
by few harmonics only. The most important spherical harmonic expansion coefficient 
is the leading (0,0) term which is just an unweighted angle average of gel, 2). The 
scalar product «r1 2 . v» is simply related to the (1, 0) == (100,000) coefficient (in the 
site-centred coordinate system) and the EOS given by (4.14) may be rewritten into 
a form (for details see ref.84) 

(3p/Q = 1 + l 1tQ I;u;p {uapGaP{uap) - :3 [Lag~~o(uap) + Lpg~~o(uap)]} = 

(4.19) 

especially well suited for a theoretical treatment. In (4.19) L,. denotes the intramolecular 
distance of site IX from the reference point and superscripts on the harmonic expansion 
coefficients denote the reference points. 

Co:iection CzeChoslovak Chern. Commun. [Vol. 51) (1986) 



2338 BoubIik. Nezbeda: 

In the above expressions the correlation function has been used directly to cal­
culate PP/e. It is evident that the resulting compressibility factor is quite sensitive 
to the accuracy of the contact value of gav' This sensitivity is, at least to a certain 
extent, suppressed in indirect methods, where another thermodynamic function 
(usually the Helmholtz free energy) is determined first. This route requires rather 
"accuracy-in-average" of gel, 2) than "point-wise" accuracy. 

Besides the NVT ensemble discussed above two other ensembles have been used 
in simulations to evaluate EOS: the NPT ensemble and grand-canonical ensemble. 

In the NPT ensemble the pressure is an independent variable and volume is cal­
culated from the relation8s •86 

(4.20) 

where Lic is an analogue of the common canonical configuration integral, 

Lic = f~ ZN(N, V, T) exp [ - PPV] d V. (4.21) 

The NPT ensemble does not seem to have any marked advantages when applied 
to pure fluids but it is a natural choice for studying liquid mixtures and particularly 
the thermodynamic excess properties. 

In the grand-canonical ensemble, the number of particles fluctuates and the basic 
relation for evaluating EOS is 

(4.22) 

where XT is the isothermal compressibility. 

Xl' = ~ (oe) . 
e ap V.l' 

(4.23) 

The left-hand side of (4.23) can be expressed by means of the pair correlation function 
which yields2 

kTXT = 1 + ~ f[g(l. 2) - 1] del) d(2) = 

= 1 + (} f[go.o(r) - 1] dr. (4.24) 

An alternative expression of XT is that by means of the direct correlation function, 
c, related to g through the Ornstein-Zernike equation, 
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h(l, 2) = e(l, 2) + (] fe(l, 3) h(2, 3) d(3) , (4.25) 

where h = g - 1. Then, for hard spheres or, more generally, for a simple fluid, we 
can write 

(4.26) 

F or molecular fluids the decoupling of c and h in (4.25) is not a trivial matter and an 
equation analogous to (4.26) can be derived only for specific models2 • Eqs (4.24) 
and (4.26) are fundamental relations called the compressibility equations and unlike 
(4.2) their application is not limited to systems in which only the pair interactions 
exist. 

4.2. Computer Experiments 

4.2.1. Methods 

Monte Carlo (MC) and molecular dynamics (MD) methods provide an experimental 
tool of the statistical physics, enabling one to study exactly model (often nonrealistic) 
systems. Since the first applications of the simulation methods they have grown into 
a large field called sometimes "computer theory" with a vast literature. Details about 
the basic principles of both simulation methods may be found e.g. in a monograph 
by Vesely87 or in an article by Ree88. Very detailed description of the Me method 
including also various technical aspects and earlier results for hard spheres and other 
simple systems is given in a paper by Wood85 . Methodology of the MC method 
has been reviewed in detail by Valleau and coworkers89 ,90, while an extensive survey 
of applications with nearly exhausting list of references can be found in Chapters 2 
of both volumes of the monograph on the Monte Carlo methods edited by Bin­
der91 ,92. Modern methods aiming at direct evaluation of "entropical" functions 
(Helmholtz free energy, chemical potential) have been recently reviewed by Shing 
and Gubbins93 • Concerning the MD methods, their methodological aspects have 
been recently reviewed by Hoover and coworkers94, while their implementation for 
various systems may be found in a monograph edited by LykoS95. 

It is not the purpose of this article to review the above simulation methods and we 
will confine therefore our considerations only to the aspects relevant to HB fluids. 

Monte Carlo method. In the overwhelming majority of simulations the quantities 
of primary interest are the correlation functions from which thermodynamic proper­
ties are evaluated. Practically all applications of the MC method to HB systems 
employ the original Metropolis and coworkers 96 algorithm and the NVT ensemble. 
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This method was apparently first extended to nonspherical bodies by Vieillard­
-Baron who investigated two-dimensional ellipsesBo and three-dimensional sphero­
cylindersBl. Despite the fact that more than a decade has elapsed since, number 
of qualitatively different HB fluids investigated so far is surprisingly very small. 
In fact, until recently only linear molecules were considered in the simulations and 
these were reviewed by Streett and Gubbinss who also discussed at length various 
technical aspects. 

Although an extension of the Metropolis algorithm to nonspherical bodies is 
straightforward, a pitfall may be the way in which random walks in the rotational 
space are realized. For instance, direct changes of the Euler angles may lead to the 
so called "bottleneck effect" which means that the configurations become trapped 
in a small region of the configurational spaces. As an attempt to link together trans­
lational and rotational moves, Streett and Tildesley97 proposed a method which, 
however, does not overcome the above problem. In a subsequent paper98 they 
proposed therefore another method but this is also ill-suited for the MC purposes. 
A simple scheme which does give a uniform distribution on the surface of a unit 
sphere was proposed by Nezbeda99. He also studied the effect of incorrect sampling 
of the rotational space but found no observable impact on the pressure. Another 
way of generating orientations was recently employed by Wojcik and Gubbins33• 

Convergence along the Markov chain of generated configurations is given, first 
of all, by the ratio of rejected and accepted configurations. This ratio is usually 
governed by two parameters, one for translational and one for rotational moves, 
and varies within the range 0·3 -;- 0·8 (for a discussion see e.g. ref. S). At present 
there seems to be a general consensus to set such values to these parameters so as to 
maintain the ratio approximatelly at the 0·5 level, although simulations with pre­
dominance of rejected configurations also appear. 

Evaluation of the EOS from either (4.8) or (4.14) or (4.19) requires extrapolation 
of the involved functions to the contact which may be a source of additional errors. 
The scalar product <r12 . v) is a linear function of s (or r) for both CB and FHS 
models and the same holds approximately true also for g~~~ close to contact. Main 
source of errors are therefore gay and GaP' Being guided by an approximate result 
for hard spheres (see Section 4.4.3.), the function gay may be fitted by a polynomial 
of the third degree. Better way seems to plot In gay vs s since this dependence has 
been found to be nearly linear64. For FHS models the r-dependence of GaP may be 
very complex and the extrapolation must be made with caution (for one general 
possibility see ref. 71). 

A very important point is a reliable estimate of the experimental errors. Most 
commonly, the whole computer experiment is divided into shorter subruns which 
are assumed to be independent and the standard error of the mean is then evaluated 
accordingly. Besides the fact that the subruns themselves must be sufficiently long to 
produce reasonable results (which may lead to substantial increase in the computer 
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time), the assumption of the lack of correlation among them is not soundly based. 
Smith and WelIs lOO proposed recently a better way of evaluating the experimental 
error based on the assumption that the series of consecutive subruns is an auto­
regressive process of the first order. Advantages of this method are obvious. For 
instance, the number of configurations required to obtain a desired accuracy can be 
estimated, and reliable error estimates can be made for runs employing far fewer 
configurations. 

The simulations are usually performed on big fast computers; however, for instance 
Labik and MalijevskylOl, by employing integer algebra and the box edge equal to 
the largest integer number, have managed to perform effectively the MC simulations 
on a relatively slow minicomputer. 

Besides the NVT ensemble, the NPT and grand-canonical ensembles are used in the 
simulations of more realistic systems, especially mixtures. For HBfluids the simula­
tions in the NPT ensemble bring no particular advantage and we are only aware of 
old Wood's simulations8S of hard discs and spheres and of very recent simulations 
on the fluids of infinitely thin platelets and ellipsoids by Frenkel and coworkers35 .s6 

The methods mentioned above can yield directly internal energy and EOS with 
reasonable accuracy. The Helmholtz free energy can be also obtained by integrating 
an equation of state but this way is rather cumbersome. Methods have been therefore 
devised enabling one to calculate the Helmholtz free energy or the chemical potential, 
and hence phase equilibria, directly. In addition to the thermodynamic integration, 
the Helmholtz free energy can be obtained by means of methods due to McDonald 
and Singerl02 and Benett103, or by using multistage104 or umbrella 105 samplings. 
Concerning the chemical potential, methods for its direct calculation can be divided 
into those based on the Widom's test particle methodl06 and its modifications 
(employing usually the umbrella sampling) and simulations employing the grand 
canonical ensemble. Some of the above methods (e.g. the test particle method) are 
quite general and can be used in combination with both the MC and MD methods 
without great additional programming effort. On the other hand, the umbrella 
sampling is ill-suited for quantities other than the chemical potential and is re­
stricted to the MC method only. However, for pure hard body fluids all these methods 
have rather methodological than practical value. 

Molecular dynamics. For purely repulsive nonspherical systems the molecular 
dynamics method has not played an important role and has been used quite rarely. 
One reason may be complexity in comparison with the MC method, which is due to 
the discontinuous nature of the potential. We may mention only simulations per­
formed on the hard sphere and spherocylinder107 fluids. 

Quite recently Chapela and coworkersl08 extended Alder and Wainwright's 
method109 to the case of potentials with any number of discontinuities. The method 
enabled them to study fluids of particles made up of complicated shape. The gene-
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ralization is done by representing the interaction potential u(l, 2) by a linear com­
bination of products of the Heaviside functions. This seems a useful approximation; 
nevertheless, it makes their particles different from exact hard bodies and the results 
correspond only approximately to those obtained in a conventional way. 

In a recent simulation study of the hard sphere fluid Erpenbeck and Wood llO 

used a combination of the MD and Me methods. Instead of investigating only one 
trajectory (as is common in MD), a number of trajectories was generated with the 
initial configuration sampled via the ordinary Metropolis Me method. Advantage 
of this combination of Me and MD is that it makes possible to evaluate the pressure 
in a number of ways. 

4.2.2. Results 

Hard spheres (HS). Since the pioneering work of Metropolis and coworkers 
and Alder and Wainwright this system has been - because of its simplicity and 
importance - simulated very frequently. Review about these results may be found 
e.g. in refs91 •92 • The homogeneous fluid phase is stable up to the packing fraction 
'1F = 0·494 ± 0·002 at which it is in thermodynamic equilibrium with the solid phase 
at the pressurell1 •112 PPu3 = 11'69 ± 0·18. Until recently the data for fluid phase 
most frequently referred to were those due to Barker and Henderson 113 obtained 
with 108 particles. Recently Labik and Malijevsky114 carried out Me simulations 
with 864 particles and Erpenbeck and Wood llO did combined Me + MD simula­
tions with as many as 4000 particles; the latter authors investigated also the de­
pendence of the pressure on system si7e. They fitted their data by a Pade approximant 
(e/. Section 4.4.1.) but this fitting cannot be, however, considered as a parametriza­
tion of the data because at higher densities it differs from them by more than the 
specified experimental errors. We have therefore performed our own simple para­
metrization, 

where 

ct l = 0'764314 

ct2 = 0'151532 

(X3 = 0·654551 . 

(4.27) 

(4.28) 

The compressibility factor given by this equation also agrees with that at '1F: (PP/(l)F = 
= 12·39 ± 0·25 and Eq. (4.27) gives 12·49. It also correlates the data of Labik and 
Malijevsky within their error bars (see Fig. 10). It is worth mentioning that Erpen­
beck and Wood claim extraordinarily high accuracy of their data (better than 
0·01 per cent) despite the fact that their independent and comparable runs at the same 
density do not agree within these errors. In any case, Erpenbeck and Wood and 
Labik and Malijevsky data are in mutual agreement; they are listed in Table IX. 
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Prolate spherocylinders (PSC). This system was the first nonspherical model to 
which the MC method was extended. It is primarily of interest in the study of nematic 
liquid crystals formed by elongated rod-like molecules. However, an attempt by 
Vieillard-Baron81 to locate nematic-isotropic phase transition for a system of 616 
PSC with'}' = 3 failed. When evaluating the results of their MC simulations, Few 
and Rigby 115 used an incorrect pressure algorithm and their results must be therefore 
discarded. All other results due to BoubHk and coworkers 75, Nezbeda99 ,116, Monson 
and Rigby 117, and Rebertus and Sando l07 (MD simulations) are in mutual agree­
ment and are listed in Table X. 

Other convex body models. In addition to PSC, other CB systems simulated so 
far are prolate and oblate ellipsoids82 ,118,119 and oblate spherocylinders33 (OSC) 
and their extreme case: infinitely thin platelets55 ,56, i.e. hard cores of OSC. 

Systems of ellipsoids were studied by Frenkel and coworkers118 ,119 using both 
NVT and NPT ensembles; two prolate ellipsoid systems were also studied by Per­
ram and coworkers82 . The former authors published extensive tables of their results 

TABLE IX 

Compressibility factors of the hard sphere fluid from computer simulationsQ 

" PP/Cl 

0'0296 1·12777 ± 0'OOO03b 

0·0411 1'18282 ± 0'00005b 

0'0740 1-35939 ± 0'00007b 

0·1481 I· 88839 ~± 0'OOO22b 

0·1572 1'964 ± 0'006c 

0'2097 2'526 ± 0'OO8c 

0·2468 3'03114 ± 0'OOO21 b 

0·2610 3'26 ± O'Olc 

0'3149 4'30 ± O'Ol c 

G'3670 5'72 ± 0'02c 

0·3702 5'85016 ± 0'00085b 

0'3965 6·81 ± 0'02c 

0·4114 7'43040 ± 0'00127b 

0·4181 7'75 ± 0'03 c 

0·4356 8'60034:::t: 0'OO128b 

0'4504 9'41 ± 0'04c 

0·4628 10'19388 ± 0'00102b 

o From ref. 1 10 only the results obtained with N= 4000 are listed, b ref. 11 0, C ref. 114. 
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(about 260 state points in the isotropic phase) and these are shown in Tables XI 
and XII. Perram and coworkers' results, presented in a form of graphs, seem to be 
consistent with those of Mulder and Frenkel. 

There is only one set33 of results for OSC due to Wojcik and Gubbins and these 
are listed in Table XIII. However, Nezbeda34 reported certain inconsistencies when 
the data were used in combination with vi rial coefficients and various analytical 
methods (see Subsection 4.5.4. for details). 

TABLE X 

Compressibility factors of the prolate spherocylinder fluids from computer simulations 
---------~------

2'0 

3'0 

0'3142 

0'2948 
0'3873 

0·20 

0·2454 

0'30 
0'3351 
0'3879 
0·40 

0·4460 
0'50 
0'5096 

0'20 
0·2676 
0·30 

0'3058 
0·3474 
0'35 
0'3927 

/JP/C? 
------------

4·42 ± 0'04a 

4'10± 0'06a 

6'84 ± O'lOa 

2'65 ± 0'02b 

2.69 ± O'lI e ,d 

3·23 ± 0'10" 
3'37 ± 0'04b 

4·48 ± 0'07b 

5'53 ± 0'14' 
7·44 ± 0·15a 

8·20 ± 0'20b 

8·18 ± 0·33c•d 

10·74 ± 0'24' 
15'20 ± 0'20b 

16·80 ± 0'90' 

3'07 ± 0'03b 

4'53 ± O'23e 

5·40 ± 0·13g 

5·40 ± O'IOb 

5'52 ± 0'28e 

6'84 ± 0'34e 

7·17±0·IIB 
8'99 ± 0·45" 

0·40 9·60 ± O'lOg 

0'45 13-00 ± 0·16g 

O' 50 18'00 ± 0·40g 

0'54 23'33 ± 0'37g,h 

a Re-ca1culated values from ref. 99, b ref. II 7, c ref. 1 07, d our estimate of the experimental error. 
e ref. 7 5, , ref. 116. B ref. 81, h almost isotropic fluid phase. 
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TABLE XI 

Compressibility factors of the isotropic prolate ellipsoid fluids taken from ref. 119• The com-
pressibility factors are claimed to be accurate, approximately, to within 1 per cent 

A = 1'25 A = 2'0 A. = 2'75 A. = 3'0 
-------

'/ PP/(l " PP/(l " PP/(l " PP/(l 

0·207 2'53 0·197 2'65 0·190 2·76 0'184 2-84 
0·282 3'71 0'271 3'87 0·256 4·10 0·189 2'78 
0'330 4'76 0'318 4·93 0'302 5·21 0·253 4·13 
0·366 5'72 0'351 5'96 0'335 6'26 0·252 4·16 
0'386 6·78 0'371 7'05 0'361 7'26 0'296 5'31 
0·408 7'69 0'398 7'89 0'382 8'23 0'298 5'27 
0·430 8'53 0'416 8·82 0'395 9'27 0'329 6'37 
0'447 9'37 0'439 9'55 0·412 10'2 0'357 7'34 
0·458 10'3 0·448 10'5 0·427 11'0 0'356 7'35 

0'471 11'1 0'453 11'5 0·443 11·8 0'381 8'24 
0·483 11'9 0·468 12'3 0·450 12'8 0'397 9'22 
0·496 12'7 0·479 13·1 0·461 13'6 0·391 9'38 
0'507 13'4 0·487 14'0 0·4712 14'2 0'407 10'3 
0'510 14·4 0'496 14'8 0·473 14·4 0·422 11·2 
0'520 15'1 0'504 15'6 0'479 15'3 0·422 11'2 
0'528 15'9 0'510 16·4 0·4817 15·7 0'432 12·1 
0'530 16'8 0'515 17'3 0'490 16'0 0·442 13'0 
0'542 17·4 0'516 17·2 0·4922 16'8 0·443 13-0 
0'5498 17'3 0'524 18'0 0'495 16'9 0'453 13'9 
0'554 18'9 0'500 \7'8 0·464 14'7 

0'528 18'8 0'5027 18'2 0·462 14'7 
0'530 18'8 0'509 18'5 0'4712 14'9 
0'536 19'6 0'504 18'7 0·4712 15'0 
0'534 19'6 0·513 18·8 0'4712 14'9 
0'539 20·4 0'5131 19·1 0·4817 16'6 
0'542 20'3 0'510 19'5 0'4817 16'5 
0'545 21·2 0'517 19'2 0'4817 16'1 
0'545 21·1 0'513 20'4 0'483 16'3 
0'550 21·9 0'521 20·1 0·4922 17·7 

0'551 21'9 0'5204 21·1 0·496 18'0 
0'553 22'7 0·5236 20'3 0'5026 18'2 
0'558 23'5 . 0'528 20'8 0'503 19'8 
0'562 24·2 0'531 21'7 0'5131 19'6 
0'5739 25'7 0'533 21-6 0'520 21'1 
0'5760 26·2 0'534 22-4 0'5236 21'3 
0'5849 27'8 O· 5341 22'5 0'530 22'7 
0'5891 29'7 0'539 23'3 0'5341 22'8 
0'5959 31· 5 0'5445 24'7 0'539 24'3 
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A = 1'25 A= 2'0 A = 2'75 A= 3·0 

PP/q PP/q 11 PP/q 11 PP/q 

0'6063 34'5 0'548 24'9 0'5445 24'8 
0'6021 33'2 0'5550 26'8 
0'6199 40'3 0'5655 29'2 

0'5760 32'5 
0'5891 35'3 

Concerning the system of infinitely thin platelets (an interesting system of particles 
with zero volume), Eppenga and Frenkel56 focused in their simulations mainly on 
the nematic phase and nematic-isotropic phase transition. The equation of state 
(for both isotropic and nematic phases) was presented as a graph and is not therefore 
included in our tables. 

Homol1uclear diatomics (HOMO DB). This is the simplest FHS model and it has 
been therefore very intensively studied. In many cases, however, only structural 
properties have been evaluated. Older data on EOS are due to Freasier 77 ,Freasier 
and coworkers72 , and Streett and Tildesley120. Data of Aviram and coworkers78 

were shown51 to be incorrect and must be therefore discarded. Newer data have 
been obtained by Freasier71 and Tildesley and Streett98 and are in mutual agreement. 
The latter authors performed extensive simulations at 45 state points covering 
elongations from 0·2 to 1·0 and packing fractions up to 0·47. These are the representa­
tive data of HOMO DB and are listed in Table XIV. Tildesley and Streett also 
parametrized these data by means of a Carnahan-Starling-type equation, 

where 

{3p/{! = [1 + (1 + UL + VL3 )11 + (1 + WL + XL3 ) 112 -

- (1 + YL + ZL3 ) 11 3]/(1 - '7)3, 

U = 0·37836 V = 1·07860 W = 1·30376 

X = 1'80010 Y = 2·39803 Z = 0·35700. 

(4.29) 

(4.30) 

The average difference between the simulation data and Eq. (4.29) is 0·4 per cent and 
the maximum difference is 1·1 per cent. Since the estimated accuracy of the MC 
data is 2·0 per cent, Eq. (4.29) enables one to determine accurately the compressibility 
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TABLE XII 

Compressibility factors of the isotropic oblate ellipsoid fluids taken from ref.119. The compres-
sibility factors are claimed to be accurate, approximately, to within 1 per cent 

1 = 0·80 1 = 0'50 1 = 0,3636 l = 0,333 

" PP/a " PP/a " PP/a " PP/a 

0,210 2-49 0,197 2,66 0,189 2,78 0·183 2,87 
0'281 3·73 0·268 3,91 0,252 4,15 0,251 4,18 
0'332 4,73 0'316 4'97 0'304 5·16 0,295 5,33 
0'370 5-67 0'351 5'96 0,335 6,26 0'327 6,41 
0'390 6'71 0'379 6'92 0,364 7·19 0'379 8,29 
0·410 7-65 0'394 7-98 0,367 7·14 0,404 10·4 
0,432 8·48 0,414 8,86 0'381 8,24 0,419 1l'2 
0·446 9'39 0·428 9,79 0'396 9,26 0,431 12,2 
0·460 10·2 0,439 10,7 0,412 10·2 0,439 13·1 
0·471 IH 0·457 11'5 0,424 1l·1 0,453 13-9 
0,483 11'9 0,466 12,4 0·438 11,9 0,466 14'6 
0'493 12-8 0,478 13·1 0·449 12,8 0,4712 15-6 
0'500 13'6 0,481 14·1 0,458 13'7 0,4712 15'6 
0'511 14,4 0,493 14'9 0'4650 14,6 0·481 16'3 
0'521 15'1 0'502 15'6 0,4712 14'9 0,4817 16'5 

0'526 15'9 0'507 16,5 0·471 14'9 
0'537 16'6 0'515 17'3 0·4812 15·2 
0'541 IN 0'514 17-3 0'4817 15'9 
0'544 18'3 0'518 18,2 0,482 15,8 
0'547 19'1 0,522 18·1 0,485 16,2 

0'526 18'9 0'4890 17·1 
0'528 18,8 0·4922 17'0 
0,530 19,8 0,492 16'9 
0'533 19'7 0'502 17,7 

0'543 20'3 0'495 18'0 
0,534 20'6 0'5027 18,3 

0'542 21,2 0,508 18'6 
0'544 21'2 0,509 18'5 
0'548 22'0 0'513 . 18'3 
0'551 22-8 0'516 19,3 
0'555 23-6 0'5236 21'5 
0,563 24·2 0'5341 22'6 
0'5624 25'0 0,5445 24'5 
0'563 25'1 0'5550 27·1 
0'5760 26'6 
0'5849 27-9 
0'5891 30'3 
0'5927 31,0 
0,6074 36,3 
0'6168 40,6 

Collection Czechoslovak Chem. Commun. [Vol. 511 [19861 



2348 BoubIik, Nezbeda: 

factor of the fluid of HOMO DB with any elongation (L ~ 1) and at any packing 
fraction. 

TABLE XIII 

Compressibility factors of the oblate spherocylinder fluids from computer simulations (ref.33) 

TABLE XIV 

rp(=I'--I) 

0·5 

1·0 

1·5 

2·0 

2·5 

" 
0·35 

0·10 
0·25 
0·35 
0·45 

0·35 
0·45 

0·25 
0·35 

0·45 

0·35 
0·45 

PP/q 

5-41 ± 0·04 

1·58 ± 0·01 
3·35 ± 0·07 
5·79 ± 0·07 

10·56 ± 0·09 
10·53 ± 0·07 

6·23 ± 0·07 
11·~5 ± 0·12 

3-83 ± 0·05 
6·79 ± 0·05 
6·81 ± 0·08 

12·30 ± 0·10 
12·09 ± 0·16 

7·37 ± 0·09 
13·00 ± 0·12 

Compressibility factors of the homonuc1ear diatomic fluids from computer simulations (ref. 98) 

PP/q 

" L= 0·2 L= 0·4 L= 0·6 L= 0·8 L = 1·0 

0·1047 1·56 ± 0·03 1-59 ± 0·03 1·63 ± 0·03 1·70 ± 0·03 1·79 ± 0·03 
0·1571 2·01 ± 0·04 2·04 ± 0·04 2·13 ± 0·04 2·26 ± 0·05 2-46 ± 0·05 
0·2094 2·59 ± 0·05 2-64 ± 0·05 2·78 ± 0·06 3·01 ± 0·06 3·36 ± 0·07 
Q·2618 3·36 ± 0·07 3·49 ± 0·07 3·67 ± 0·06 4·05 ± 0·08 4·62 ± 0·09 
0·3142 4·45 ± 0·09 4·59 ± 0·09 4·95 ± 0·10 5·48 ± 0·11 6·40 ± 0·13 
0·3665 5·95 ± 0·12 6·21 ± 0·12 6·69 ± 0·13 7·52 ± 0·15 8·95 ± 0·18 
0·4189 8·02 ± 0·16 8·42 ± 0·17 9·23±0·18 10·54 ± 0·21 12·64 ± 0·25 
0·4451 9·44 ± 0·19 9·91 ± 0·20 10·89 ± 0·22 12·50 ± 0·25 15·12±0·30 
0·4712 11·17 ± 0·22 11-67 ± 0·23 12·87 ± 0·26 14·88 ± 0·30 18·06 ± 0·36 

Collection Czechoslovak Chem. Commun. [Vol. 51) [1986J 



P-V-T Behaviour of Hard Body Fluids 2349 

Heteronuclear diatomics. This system was studied long time ago by Jolly and co­
workers 73 and by Streett and Tildesley120. The former authors considered five 
different models, each at two densities, while the latter authors considered several 
models but each at one density only. The latter results are also subject to relatively 
high uncertainty, about 7 per cent. Simulations of one model at several densities 
were carried out recently by Nezbeda and coworkers121. All the above mentioned 
data are listed in Table XV. 

Other FHS models. Other FHS models for which simulation data are available 
are symmetric triatomics, both linear74 ,121,122 and non_linear69 ,122, and tetrahedral 
penta-atomics63• For each of these models only one set of data is available so that 
no comparisons and checks can be made. The results are shown in Tables XVI 
and XVII. 

TABLE XV 

Compressibility factors of the heteronuclear diatomic fluids from computer simulations 

L O'B 11 PP/q Ref. 

0'3333 0'6667 0'2094 2'660 ± 0'13 73 
0'3665 6'040 ± 0'30 73 

0'375 0'5 0'4084 7'8 ± 0'55 120 
0'50 0'8333 0'2094 2'780 ± 0'10 73 

0'3665 6'510 ± 0'33 73 
0'6667 0'2094 2'750 ± 0·14 73 

2'580 ± O·D 73 
0'3665 6'450 ± 0'32 73 

0'5556 0'2094 2'680 ± 0'13 73 
0'3665 6'340 ± 0'32 73 

0'50 0'4084 8'3 ± 0'58 120 

0'625 0'50 0'25 3-46 ± 0'12 121 
0'30 4'58 ± 0·15 121 
0'35 6'04 ± 0'25 121 
0'40 8·44 ± 0'32 121 
0'4084 8'90 ± 0'62 120 

0'6667 0'6667 0'2094 2'93 ± 0·15 73 
0'3665 7'13 ± 0'36 73 

0'75 0'84 0'4084 9.9 ± 0'69 120 
0'67 0'4084 10·1 ± 0'71 120 
0'50 0·4084 10'0 ± 0'70 120 
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4.3. Lattice Theories 

The virial expansion, considered in the previous part, was originally formulated as 
a "gas-like" approach to the description of dense fluids. Lattice theories, intensively 
studied in 30-50ieths, represent an alternative "solid-like" approach. The main 
theoretical developments (including Kirkwood's work on communal entropy123) 

TABLE XVI 

Compressibility factors of the symmetric triatomic fluids from computer simulations 

L erA co, deg 11 PP/q Ref. 

Linear models 

0'3738 0'8333 0·4697 12'88 ± 0'64 74 
0·4485 1'00 0·4697 12-84 ± 0'64 74 
0'5233 1·1669 0'4697 14'84 ± 0'74 74 
0'5 1'0 0'4533 12'88 ± 0'39 122 
0·8 1'0 0·25 4'48 ± 0·18 121 

0'30 6'04 ± 0'24 121 
0'35 8'33 ± 0'30 121 
0·40 11-65 ± 0'45 121 

Non-linear modele 

0'5 1'0 90 0·3988 8'34 ± 0·25 122 
0'8 0'(; 105 0·25 4'94 ± 0'12 69 

0'30 6'84 ± 0'17 69 
0'35 9'46 ± 0'24 69 
0'375 11'14±0'33 69 

TABLE XVII 

Compressibility factors of the tetrahedral penta-atomic fluid from computer simulations. erA = 
= 1'0294. L = 0'5206, r = 2·1474. Values are taken from ref.63 

11 

0'20 
0'30 
0'3555 
0'40 

2'94 ± 0·09 
5'39 ± 0·16 
7·70 ± 0'30 

10'26 ± 0'30 
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and results are reviewed in monographs by Hill22 and Barker124• At present, results 
of the classical lattice theories are only of limited value for describing the P-V-T 
behaviour of isotropic fluid phases but they have found applications in thermo­
dynamics and chemical engineering of mixtures and polymers; some ideas of these 
theories formed also a basis for the development of methods discussed in Section 4.4 .. 
Moreover, several theoretical works have appeared which have been devoted to the 
application of improved lattice theories to the problem of solid-fluid phase transi­
tion. Here we first sketch simple lattice theories and then outline recent improved 
versions. 

In simple lattice theories a long-range order in liquids is assumed, with molecules 
moving for most of time in the vicinity of the lattice points - the centres of cages 
(cells) formed around molecules by their closest neighbours. The total potential 
energy is then a sum of the lattice energy (for all the molecules fixed in their lattice 
points), U 0, and contributions from single molecules given by their motion within 
the cell. 

Assuming single occupancy and the independent motion of molecules in the cells, 
the configuration integral, Z, can be written as a product of two principal terms: 
the Boltzmann factor containing energy U 0, and the free volume, Vr, given by an 
integral over a volume accessible to a single molecule, i.e. 

Z=exp[-pUo]V~, (4.31) 

where 

Vr = fexp { - p[ cp(r) - cp(O)]} dr , (4.32) 

q> denotes a sum of interactions of a chosen molecule with its closest neighbours; 
r is the distance from the cell centre. In the case of HS U 0 = 0 and the free volume 
can be easily evaluated from the cell geometry. Very often, however, Vr is related 
to the volume Vof the system by means of a geometric factor, D, and the fact that 
in the case of the close-packed structure Vr equals zero is taken into account. Then 

(4.33) 

and 

(4.34) 

where subscript c denotes a close-packed property; Vc = Nu3/.J2. 

According to the cell theory, in which the number of cells, L, equals the number 
of molecules, N, each molecule is confined to only a very small fraction of the volume 
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V even at (2 --+ o. As a consequence of this fact EOS (4.34) yields unsatisfactory 
description of fluids at low densities. This serious drawback of the cell theory is, at 
least in principle, removed in hole and tunnel theories of liquids. In the hole theory 
the number of cells is greater than N, so that there exist vacant and single-occupied 
cells in the system. Due to the lack of symmetry the determination of the free volume 
is not so simple. It is possible to relate it by a semiempirical rule (in six possIble 
variants) to the volume of an empty cell and to the Vf from the cell theory. The tunnel 
theory makes use of the knowledge of the exact value of one-dimensional configura­
tion integral; the remaining two-dimensional (2-D) integral is approximated by the 
2-D cell model; for details see ref.124. Physically quite satisfying is the cell-cluster 
theory (see ref. 124) in which multiple occupancy and correlation of molecular mo­
tions within clusters of one, two, ... cells is considered. Practical results, however, 
do not represent substantial improvement over the cell and hole theories. None of 
the variants of classical lattice theories yields satisfactory description of the P-V-T 
behaviour at very low densities. From comparison with pseudoexperimental data it 
appears that results of these theories for higher densities closely follow the properties 
of a solid. 

Novel ideas have been brought to the formulation of lattice theories by Hoover 
and coworkers125 -126. They considered cells of different sizes with the size distribu­
tion related to the path of a very light test molecule, quickly moving in comparison 
with others. For 1- to 3-D systems they get for the compressibility factor the ex­
pression 

z = 1 + (a/2D) <Sf/Vr) , (4.35) 

where D stands for the dimensionality, a is a characteristic parameter and Sf a boun­
ary surface - e.g. surface area, line or point. The same relationship has been derived 
also by Speedy127. In the case of the I-D system the mentioned approach yields 
the exact expression formerly derived by Tonks128 for hard rods. This expression 
is related to the r distribution and this fact led Hoover and coworkers and later 
Vortler and coworkers l29 ,130 to the assumption that also the cell size distributions 
in the 2-D and 3-D systems are governed by the same rule. Two parameters charac­
terizing the r-distribution can be adjusted to the HS close-packed properties, or 
random close-packed ones. The equation of state of the latter authors possesses then 
the form 

(4.36) 

where mHS is a coefficient of dispersion, m HS ~ 2 (e.g. m HS = 2·12 in ref. 130). 
As a unique attempt within the framework of lattice theories, Vortler and Hey­

bey130 considered also nonspherical particles. For convex bodies they found 

(4.37) 
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where IX is the parameter of nonsphericity. Comparing the last two equations one 
can see, that the CB equation of state can be expressed in terms of ZHS at the same 
packing fraction, 

Znonsph = ZHS + (IX - 1) (ZHS - 1). (4.38) 

The same form of the equation of state was considered recently also by Chung 
and coworkers131 as a simplified version of BoubHk's semi-empirical equation of 
state (4.118). They showed that (4.38) is quite accurate for '1 ;;;;; 0·1 and IX ~ 1·5. For 
IX = 1·5, however, the second virial coefficient is approximately by about 10 per cent 
higher than the correct value. 

Also a method recently proposed by Sugiyama132 belongs to the group of the 
free volume theories. For HS he found exact expressions for the so-called vacancy 
volume, vo, for the overlap volume, VI' (volume available to the centre of molecule 1 
when it overlaps with one neighbour) and for the fluctuation vacancy volume term, 
cpo For the second derivative of the configuration integral, Z", which is in a simple 
relation to the isothermal compressibility, he obtained an exact expression 

(4.39) 

where tilde denotes quantities reduced by the HS volume. Also the volumes Vo and VI 
are expressible in terms of the derivatives of Z with respect to '1; after substituting 
into (4.39) a system of two differential equations for four variables results. At low 
densities, '1 ~ 0·125, the author employed the limiting values of Z and VI and found 
an expansion 

(4.40) 

which, for the free volume theory, is in good agreement with the exact virial expan­
sion. 

The importance of the above approach is in its good description of the high 
density range. Introducing a quantity "vacancy number" defined as a number of 
HS that can be added to a given distribution of molecules in a given volume, and 
by finding its probability density, Sugiyama132 managed to express quantities in ex­
pression (4.39) for Z" for high densities. In this case two parameters of the solution 
were adjusted to computer data. There are two branches, (+) and ( -), of the de­
pendence of the isothermal compressibility on density. The positive branch is in close 
agreement with the Pade approximant for the compressibility of the low density 
fluid phase, whereas the ( - ) branch corresponds at high densities to the free volume 
curve. Most interesting is the fact that at '1 ~ 0·64, corresponding practically to 
the random close-packing, the ( + ) branch tends to zero. 

An attempt to describe the solid-fluid phase transition of hard spheres within 
the framework of the hole theory was made by Shinomotol33 • For the free volume. 
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Vr. he proposed the relation 

In Vr = In Vs + hi In (vo/vs) , (4.41) 

where Vs = (V~!3 - v~/3)3 and Vo = V/L. The dependence of the factor hi on the 
number of neighbours, i, was determined numerically for given geometric structures. 
The theory yields only qualitative description of the phase transition. 

In Fig. 6 the compressibility factors given by the cell theory, Eq. (4.34), and 
the Vortler equation, Eq. (4.36), are compared with simulation data. It is seen 
that while the cell theory is uniformly poor, the latter theory provides substantial 
improvement but yet the overall agreement is only fair. Concerning Eq. (4.37), its 
only advantage is simplicity, otherwise it is inferior to most equations to be discussed 
in Section 4.5 .. 

It can be concluded that the theories considered in this section remain, in spite 
of considerable effort, unsuitable for describing the P-V-T behaviour of fluids 
over the entire density range and their only merit lies in characterizing the phenomena 
at highest densities. 

4.4. Hard Sphere Fluid 

4.4.1. Expansions and Resummations 

The virial expansion (2.1) provides the simplest and rigorous way to obtain the 
EOS. There are two problems associated with Eq. (2.1),namely (i) convergence of the 
expansion and (ii) limited knowledge of the vi rial coefficients. 

Regarding the convergence, rigorously only lower bounds to the radius of con­
vergence have been established: ~ '" 0·018 (ref. 134) and then ~ '" 0·019 (ref. 135). 

14 

nPlp 

8 I 

...-
_.".;;:::". 

2 ..,.--;.:::t':'-­, 
o 0·2 

A / 
./.. // 
// ..- "'" 

f} 

/ 
/ 

/ 
/ 

I 
I 

/ 
I 

/ 
I 

06 

FIG. 6 

Compressibility factors of the hard sphere 
fluid calculated from cell theories. -. -.­
Eq. (4.36); --- Eq. (4.34); -- exact 
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However, these values are still too small compared with physically interesting and 
relevant values. There are, in general, two singular points that could be associated 
with possible singularities in the virial series: the regular close packing '10 = 1t ,J2/6, 
corresponding to the maximum possible density for the crystalline branch of the 
hard sphere EOS and the random close-packing 1 36, '18 ,.., 0·6535, corresponding 
to the amorphous branch. At present there is no general consensus with which 
density to associate the singularity in the virial series. For details and references 
we refer a reader to a review article by Angell and coworkers137• 

The virial expansion is subconsciously linked with the low density region beyond 
which it becomes useless. This may be generally true but not in the case of hard 
spheres. In Fig. 7 we show the compressibility factor calculated from the virial 
expansion (3.1) with 3 through 10 terms (i.e. up to B 1O( 9 ). It is seen that the expansion 
is quite well converging and one may conjecture that adding few more terms would 
make the expansion coincide with the simulation data even at very high densities. 
There is however an important obstacle - evaluation of further virial coefficients 
is practically impossible. One may try to overcome this problem by proceeding along 
three possible paths: to estimate all remaining coefficients (e.g. by a recursion for­
mula), or to apply some re-summation technique (as e.g. Pade approximants), or to 
accelerate convergence of the expansion by using another variable as an expansion 
parameter instead of the density. 

Virial coefficients B4 + B6 from Table II can be approximated by integers and 
the resulting progression can be then expressed by a formula138 

B* ·2 . 2 B* B /",,,.1-1 1=1+1-, 1= i' . 

FIG. 7 

Compressibility factors of the hard sphere 
fluid calculated from expansion and resum­
mation methods. --- P(3,3), Eq. (4.48); 
-.-.- Eq. (4.53); -- exact; • cor­
respond to the truncated virial expansions 
with 3 up to 10 terms. Results of Eqs (4.44), 
(4.46), (4.49), and (4.52) are indistinquishable 
from the exact data within the scale of the 
graph 
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Assuming that all virial ooefficients can be approximated by Eq. (4.42), the virial 
expansion takes on a very simple form, 

PP/e = 1 + L (i2 + 3i) 'Ii . (4.43) 
iOl;O 

The infinite sum on the right-hand side of (4.43) can be simply evaluated which 
results in the Carnahan-Starling (C-S) equation of state: 

(4.44) 

This simple equation performs surprisingly well: the maximum deviation from the 
parametrized equation (4.27) does not exceed 0·3 per cent. This result suggests that 
approximation (4.42) with a quadratic dependence of B~ on i is a very good ap­
proximation. This dependence gives rise to the (1 - '1)3 term in the denominator 
of an EOS and therefore such a functional form has been used to parametrize the 
simulation data (c/. Eq. (4.27». The C-S equation can be further simply improved 
by improving prediction of the lower virial coefficients. The approximation139 

Bf = ·W2 + 3i - 6), i ~ 3 (4.45) 

leads to the equation 

(4.46) 

which is approximately by one order better than the C-S equation. 
An infinite series, as e.g. (3.1), whose only M first coefficients are known, can be 

approximated in a number of ways. The usual way is to apply the Pade approxi­
mant140 (PA), 

(4.47) 

whose coefficients are defined so that the Taylor expansion of P(m, n) reproduces 
exactly the first M = n + m coefficients. In the case of the virial expansion (3.1), 
approximation (4.47) may be thus viewed as a sort of analytic continuation beyond 
the neighbourhood of 'I ~ o. It is not necessary to estimate directly the given infinite 
series but another function related to it. This method may (but need not) lead to 
a better estimate of the original series. 

Although PA provide a powerful tool for estimating infinite series and have been 
frequently used for evaluating EOS, general conclusions based on them must be 
made with caution. 

Hard sphere EOS has been usually represented by the P(3, 3) approximant based 
on the nominal values of Bs and B6 (together with the exact values of B2 + B4)' 
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Coefficients of this approximant arel4I : 

ai = 0·836832 b J = -3·16317 

a 2 = 1·14845 b2 = 3·80112 

a3 = -0·098649 b3 = -2,03621. 

2357 

(4.48) 

Other approximants, P(rn, n), along with their coefficients and discussion of occur­
ring singularities (poles or a maximum in pressure) may be found in papers by 
Aguilera-Navarro and coworkers I42 ,143 or in a recent paper by Baker and co­
workersl41 • 

In Fig. 7 the compressibility factors given by Eqs (4.47) and (4.48) are shown and, 
surprisingly, the result is in no way better than that from the truncated viria] expan­
sion with the same number of coefficients used. 

Erpenbeck and WoodllO used recently PA to fit their simulation data by allowing 
the coefficients B6 and B, to vary about their nominal values so as to get the best 
fit: B6/B~ = 0·0389 + 0'000416' B,/B~ = 0·0137 + 0·0006/" where 16 and I, are 
adjustable parameters. They obtained the best result with PA in the form 

with/6 = 0·2394 and I, = -1,0556. The coefficients of PEW are 

a1 = 0·2227128 b i = -2'2772872 

a2 = 0·22311216 b2 = 1·32624176 

a 3 = -0,08575744. 

(4.49) 

(4.50) 

(We remind that coefficient b i in Table III of r,efYo is erroneous and should be 
-0·5693218). Eq. (4.49) performs much better than P(3,3) with the coefficients 
given by (4.48), see Fig. 7, and with exception of the highest densities it agrees with 
the simulation data. 

Comparison of the results based on the above two P A indicates their high sensitivity 
to the values of the virial coefficients and this is the main problem associated with 
their application. It can be easily shown that by varying the virial coefficients B s 
through B, within the limits of their expected values one can obtain even such an 
absurd result as PP/e = ± 00 at about '1 ,... 0·38 and this fact practically degrades 
higher order PA into a correlation scheme of data only. Or, equivalently, if PA are 
yet to be used to predict an EOS, then they must do with less virial coefficients. 
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Some years ago. Alder and Hoover144 suggested to use approximants not directly 
for fJPle but for the function 

(fJPle) (1 - tI) ~ P(rn, n). (4.51) 

These approximants require virial coefficients up to rn + n + 1 and the coefficients 
for P(3, 2) and P(2, 3) approximants may be found in ref.14S. Alder and Hoover's 
application of the PA may be viewed as a part of a general scheme in which the 
known (or expected) functional dependence of fJPle on " is explicitly considered34• 

The C-S equation (4.44) and integral equation results (see subsection 4.4.3.) indicate 
that the hard sphere EOS may be written in a form 

fJPle = _1_ + "cp(,,) 2 ' 

1 - 1J (1 - 1J) 
(4.52) 

where cp(,,) is an unknown function. If only this function is approximated by the 
PA, one may intuitively expect that fewer virial coefficients will be required to reach 
the same accuracy as with fJPle ~ P(rn, n) or (4.51). Using only B2 and B3 (i.e. 
P(l,l) approximant) in (4.52), the equation identical to the P-Y compressibility 
equation, Eq. (4.89), results. P(2, 1) approximant then yields an equation which is 
numerically equal to the C-S equation (for details see ref.34). 

For completeness we may include into the application of the P A to the HS fluid 
older results aiming at developing a better EOS at that time. Let us name at least 
the equations due to Hall146, Le Fevre147, and Woodcock148. Another attempt was 
made recently by Hoste and van Dael 149 who fitted parameters of a general form 
of the EOS. 

Other approximants that have been applied to the virial expansion are those of 
Levin and Tova. Levin150 developed a scheme based, roughly, on fitting a series and 
its differences to an appropriate sequence, e.g. harmonic. For a power series the 
Levin approximants are represented by the ratio of two polynomials, similarly as 
the P A, but of higher degrees. The Tova approximant was considered by .Baram 
and Luban151 . However, the results based on both the Levin and Tova appro­
ximants are not much better than e.g. those based on the regular P(3, 3). 

Independent theoretical approaches (see the next section) indicate that a hard 
sphere EOS may be written as a cubic polynomial in ,,/(1 - ,,). It is thus natural 
to consider the exact EOS as an infinite-order power series in this parameter152 : 

fJPle = ! Len (_tI_)n , 
1JnE;l 1-" 

(4.53) 

Collection Czechoslovak Chern. Commun. [V~I. 51) (1986) 



P-V-T Behaviour of Hard Body Fluids 2359 

where 

C = L n (_1)n-k+l B -t k - I • n+l ( ) 

n+l k=1 k _ 1 k 
(4.54) 

Results of this approach are roughly similar to those obtained from (4.52) with 
rp('1) being approximated by the PA: the three-term expansion (involving Bz and B3) 

is identical to Eq. (4.89) and the four-term expansion performs slightly worse than 
the C-S equation and comparably to the P(3, 3) approximant (4'48). While the five­
-term expansion does not differ significantly from lower-order ones, the six-term 
expansion does and this indicates that, similarly to the PA method, higher-order 
expansions need not yield better results. 

In Fig. 7 the results given by Eqs (4.44), (4.46), and (4.49) are, within the scale 
of the graph, indistinguishable from the simulation data over the entire fluid range. 
The truncated expansion (4.53), (B-G) does not seem to be a better alternative to the 
virial expansion which seems to converge very well. If an expected functional form 
of the EOS is made use of, then the PA with only a few vi rial coefficients can be 
used. Including the higher (and only approximately known) virial coefficients in PA 
makes the result unreliable. The best method seems to be a recursive estimation of 
all vi rial coefficients enabling one to sum up the infinite expansion. For further dis­
cussion see Subsection 4.4.4. and Fig. 10. 

4.4.2. Theories for Fluids with Discontinuous Potentials 

Majority of theories of fluids has been devised for systems with an arbitrary inter­
molecular potential function. There are, however, several theories especially de­
veloped for hard body systems or, more generally, for systems with pair potentials 
given by step functions. The scaled particle theory, theories of Andrews, Speedy, 
Meeron-Siegert, and a "simple kinetic theory" belong to this group of theories. 

Scaled particle theory (SPT). The basic idea of the SPT153 -1 55 is the choice 
of the coupling parameter in Eq. (4.4). The authors found that a suitable choice 
of this parameter is the diameter of a test particle or a dimensionless dilatation pa­
rameter, e. For the interaction of the test particle with other particles u = 00 for 
r ~ 0-(1 + e)/2 and u = 0 for r > 0-(1 + ~)/2. It is obvious that the change of ~ 
scales the size of the test particle: for e = 1 it is equal to that of other molecules of 
a system, for ~ = 0 we have a point-wise particle and the complete decoupling is 
reached at e = -1. With this choice of ~ the differentiation in (4.4) yields the Dirac 
function so that 

(4.55) 
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and the EOS is given by Eq. (4.12). This choice of the coupling parameter makes it 
possible to express both the compressibility factor and the chemical potential in terms 
of the function (§(e) and the knowledge of (§(e) for e E ( -1, 1) is fully sufficient for 
determining all thermodynamic functions of hard spheres. Moreover, the form of 
(§(e) is exactly known in the interval ~ E < -1,0). Since the reversible work W to 
couple the ~-particle to the system is the same as that for creating a cavity of the 
size (1 + ~) a12, 

W(~) = -In [1 - TCQa 3(1 + ~)3/6J = -In [1 - 11(1 + ~)3J, ~ ~ 0, (4.56) 

Eq. (4.56) enables one to determine (§(~) and also the first and second derivatives, 
t§' and (§", at ~ = O. Another relation holds for ~ = 00, because in this case the 
surface of the scaled particle is planar and hence 

(4.57) 

Reiss and coworkers153-155 employed the obtained values of (§(O) and (§'(O) , i.e. 

(§(O) = (1 - 11t 1 

(§'(o) = 3111(1 - 11)2 

(4.58) 

(4.59) 

and (4.57) for determining the three coefficients A, B, and C, in an approximate 
interpolation formula 

(§(~) = A + B( 1 + ~) - 1 + C( 1 + ~) - 2. ~ ~ 0 . (4.60) 

Then from (4.11) they obtained the equation of state 

(4.61) 

Eq. (4.61) is equivalent to the c-form of the Percus-Yevick EOS, derived four years 
later (see subsection 4.4.3.). It yields the correct 2nd and 3rd vi rial coefficients and 
predicts the P-V-Tbehaviour within 1 per cent for 11 < 0·25. 

In further studies Reiss and coworkers156 ,157 tried to improve the accuracy of the 
SPT by considering higher-order interpolation formulas and further exact relation­
ships, and also to extend the scheme to fluids with more realistic potentials but 
without any great success. 

Theory of Andrews. Probability arguments employed recently in several successful 
approaches for one-, two-, and three-dimensional systems (I-D, ... ) were introduced 
in a very simple way already by Andrews158. Because of this fact this theory is 
described here in a slightly more detailed way. The central function considered by 
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Andrews is the chemical potential, p.. From the well known relation (see e.g. refs22 .25) 

between the residual chemical potential and the configuration integrals for Nand 
N + 1 particles it follows that exp ( - Pp.res) equals the probability that no centre 
of any HS lies in the domain of a diameter u around a randomly chosen point in 
a volume V. This probability can be expressed as a product of the unconditional 
probability that a randomly chosen point (the centre of a test particle) lies outside 
all HS, and the conditional probability that, providing that the test particle's centre 
lies in a hole, no centre of the regular particle lies within the distance u. 

The determination of the probability is simple in the 1-0 case: If L is the 1-0 
volume, the unconditional probability is (L - NU)/L = 1 - '71 (where '71 = NulL 
is the 1-0 packing fraction and NIL the number density). For determining the con­
ditional probability, the total empty space (L - Nu) is divided into N particle separa­
tions. The probability that in the space (L - Nu) a point lies outside a domain of 
length u is 1 - u/(L - Nu) and the sought conditional probability is just equal to 
the N-th power of the last expression. Thus 

exp ( - PJl.res) = (1 - 111) [1 - u/(L - NU)]N = 

= (1 - '71) exp [ -'71/(1 - lid] . (4.62) 

The corresponding equation of state which follows from the relation between the 
residual chemical potential and the compressibility factor possesses the exact form, 
first derived by Tonks128. 

In the 3-D HS system the unconditional probability is 

(4.63) 

To insert the (whole) test particle into the system at a given point, an additional 
volume !1tU3 - a-1tU3 = irru3 is required. The conditional probability is again equal 
to the N-th power of the probability that one particle lies outside this additional 
volume. If (V - Nw) is the free volume, then 

[ 71tU3/6 IN 
exp (-pJl.res) = (1 - '7) 1 - (V _ Nw) 

= (1 - '7) exp [_ 71t(lU3~J 
1 - (lW 

= (1 - '7) exp [-7,,/(1 - (lw)]. 

(4.64) 

( 4.65) 

In (4.65) w denotes an average volume per particle; Andrews relates it to the close­
packed volume Vc = U3/.J2. In the zeroth approximation w = Vc' A better approxima­
tion is the linear dependence of w on (l with the coefficients determined from the 
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virial expansion. If d is the reduced density, d = Q/Qe = 17/0'74048, then the resulting 
EOS is 

f3P/Q = 5'1834d/(1 - 1·5340d + 0·5340d1) - (1'3504/d) In (1 - 0'7405d) -

- (4'8534/ d) In (1 - 1· 5340d + O' 5340d1) -

- (15'977/d) In [(1 - 0'5340d)/(1 - d)J. (4.66) 

Speedy's method159 copies in many respects the derivation of (4.65). The relation 
between the residual chemical potential and the probability IT that for a chosen 
point in V there is no HS within the distance (j is considered. Speedy introduces 
a modified volume w' in such a way that JI can be replaced by the probability that 
in an ensemble of points in the volume (V - NW') there lies no molecule within the' 
distance (j around a randomly chosen point, i.e. 

exp (- f3f.1-res) = [(V - Nw' - t1t(j3)/(V - Nw')JN = exp [ - 817/(1 - ('W')J . (4.67) 

The linear dependence of w' on density is assumed; moreover, w' --+ Ve for (' --+ Qe' 

Thus 

w' = (j3[1 - (1 - 1/~2) dJ (4.68) 

and 

f3p/ - 1 t ~2d-l { d1 In (1 - d) 
Q - + 1t (1 _ d)[l - (~2 - 1) dJ + 2- ~2 -

_ In [1 - (~2 - 1) dJ}. (4.69) 
3,./2 - 4 

In a subsequent work 160 Speedy considered a quadratic dependence of w' on (' and 
adjusted the coefficients to the 3rd through 5th virial coefficients. The resulting 
equation 

f3p/ = 1 41t ~2 { d1 
_ ---:-_a __ . 

Q + 2 3 3 
3d 1 - Cod - C1d - C1d a - ab + c 

. [In :~/:~ + 2a:~ b (arctg e ::Cd) - arctg (~))]} (4.70) 

is very accurate up to very high densities and yields also accurate values of the 
virial coefficients B6 through B 10' In (4.70) q = 4ac - b1 , X = a + bd + cd2 , 

d = 17/0'74048, and 

Co = 1·38840 a = 0·274141 

C1 = -0·249386 b = -0·455776 

C1 = -0,19331 C = 0·193316. 
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Theory of Meeron and Siegert. In the SPT the idea of considering a cavity (of 
a radius 0) instead of the hard sphere of diameter (J appeared to be very fruitful. 
This concept was extended further by Meeron and Siegert161 who considered two 
and more cavities, all of the same size corresponding to the given hard spheres. 
The concept is valid for 1-D, 2-D, and 3-D systems and is well-suited for introducing 
further approximations. 

If Jl.res is the residual chemical potential and a the activity at a given density, the 
probability [[0 of finding a cavity (where subscript 0 denotes functions of cavities) 
is 

[[oCr) = exp(-pJl.res) = eta. (4.71) 

The probability [[~2)(fl' f2) of finding two cavities at fl and f2 depends only on r12. 
For /"12 ~ (J [[~2) is equal to the probability of finding two HS at fl and f2. For r12 < (J 

the cavities overlap and for r12 = 0 one cavity merges into the other. Then 

(4.72) 

For the distribution function of two cavities, 9b2)(r), which is equal to the back­
ground correlation function y(r), it holds 

(4.73) 

(4.74) 

This is the so-caned zero-separation theorem (cf. Hoover and Poirier162). As y(r) is 
related to the potential of the mean force its knowledge enables one to determine 
the EOS. By differentiating y one gets the mean force exerted on a cavity a distance r 
apart from another. In the case of HS it is given by a stress of purely kinetic character 
which depends only on the density of particles on the surface of the cavity. In the 
simplest case of the so-caned pair stress approximation (PSA) this exact stress is 
substituted by a pair stress, assumingly constant for all angles (up to a maximum 
angle) measured with respect to the line connecting the pair of cavities. The equation 
of state in the PSA is 

(4.75) 

which is valid for I-D to 3-D systems. The EOS is exact in the I-D case and the 
accuracy decreases with dimensionality. The next higher approximation possesses 
the form 

(4.76) 

Collection Czechoslovak Chern. Commun. [Vol. 51) (1986] 



2364 Boublik. Nezbeda: 

where 

(4.77) 

(note that B2 (l = 411 in the 3-D case). The accuracy of (4.76) is considerably better 
than that of (4.75) but slightly inferior to the SPT equation. An important feature 
is the fact that the maximum density on the (l vs Z curve is close to the pseudoexperi­
mental value of (l (in fluid) at fluid-solid phase transition. The Meeron-Siegert 
approach makes it possible to evaluate the background correlation function y(r) 
in the interval r E (0, 0"), see refs163.164. It also brings several important interrela­
tions between a formalistic description connected with the BBGY equations (see 
next Subsection 4.4.3.) and the geometric view. Higher approximations can be also 
considered. One such attempt was made by Speedy 1 65 , who generalized expressions 
for y. However, the equations of state corresponding to higher approximations 
in Speedy's expression yield neither improvement in accuracy of the P-V-T descrip­
tion nor better physical insight. 

Si mple kinetic theory. In the SPT, the limiting value of ~(~) for ~ --+ 00 was 
obtained from the simple kinetic theory. In Shinomoto's work166.167 the kinetic 
effect is considered in determining the potential of the mean force ({J for a pair of HS 
in a manner similar to the Meeron-Siegert approach. For a given distance x = rIO", 
({J is in the simplest approximation given by 

(4.78) 

The knowledge of ({J makes it possible to determine g. Considering results of colli­
sions when a test particle is situated in the vicinity of a planar wall, the zeroth-order 
EOS results: 

ppl(l = exp (417). (4.79) 

Eq. (4.79) yields correctly only the second virial coefficient. The next approximation 
of ({J gives the equation of state 

ppl(l = exp [417(1 + 1712)] • (4.80) 

The corresponding expansion is 

(4.81) 

which compares well with values of B j in Table II. The EOS possesses a simple form 
and is accurate at lower densities. There is, however, no value of 17 that gives a singula­
rity. 
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The methods considered in this subsection (with an exception of Shinomoto's 
work) are applicable to 1-D through 3-D fluids and give the exact result in the 1-D 
case. In the 3-D case their accuracy is, however, usually only fair. 

In Fig. 8 the theoretical curves are compared with the pseudoexperimental data. 
One can see that predictions of the zeroth-order approximations of Shinomoto 
and of Meeron and Siegert are in considerable disagreement with the exact data 
and that the first-order approximations are much better. Theories of Andrews and 
Speedy yield practically perfect prediction up to the packing fraction of ,., < 0·5 
with the latter equation being slightly better. However, Speedy's equation has not 
been extended to mixtures. A common week point of all theories of this subsection 
but the SPT is that their extensions to nonspherical HB fluids are not known. These 
facts make the SPT a very important and universal tool for deriving an EOS of hard 
body fluids. 

4.4.3. Integro-Differential and Integral Equations 

Integro-differential and integral equations serve to determining the dependence 
of correlation functions on density and particle separation. The equation of state 
follows from the knowledge of the pair correlation function at contact or from the 
course of the direct correlation function in the range of distances r E (0,0') (cf. Eq. 
(4.26)). 

lntegro-differential equations. These equations were formulated by Kirkwood168, 

who considered the change of the correlation function with gradual coupling of 
a test particle into the system, and by Bogolyubov169, Yvon17°,and Born and Green171 , 

who took the gradient of the logarithm of the correlation function, dealing actually 
with the mean force in a way similar to the Meeron-Siegert theory. Performing 

FIG. 8 

Compressibility factors of the hard sphere 
fluid calculated from specific methods. 
----- Eq. (4.66); ........ Eq. (4.75); -.-.­
Eq. (4.77); - .. - Eq. (4.79); --- Eq. 

10 

(4.80); -- exact. Eqs (4.69) and (4.70) 2 

coincide with the exact data within the scale 
of the graph o 
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the differentiation (for details see e.g. ref. 22) a hierarchy of expressions is obtained 
in which the required correlation function is given in terms of the correlation function 
of the higher order, e.g. the pair correlation function in terms of the third-order 
function. The superposition approximation (or an equivalent of it) 

(4.82) 

must be therefore employed to break the infinite hierarchy. The following equation 
then results22 : 

kTln g(r,~) = -~u(r) + 1t(! foo[K(r - t,~) - K(r + t, ~)J [get) - 1J dt, (4.83) 
r 0 

where kernel K is either 

or 

K(t, ~) = ~ foo (au/as) g(s,~) (S2 - (2) ds (BBGY) 
It I 

K(t, ~) = -2 f~ foo u(s) g(s, r) s ds dr (Kirkwood). 
o It I • 

(4.84) 

(4.85) 

In the case of hard spheres Eq. (4.83) can be simplified and easily solved numerically. 
The resulting dependence of the compressibility factor on the packing fraction for both 
versions is shown in Fig. 9. They both yield the correct second and third virial 
coefficients and thus the correct prediction of PPj(! in the low density range. For 
higher values of 1], however, the theoretical values are systematically lower. There 

(JPlf' 

o 0-2 04 

FIo.9 

Compressibility factors of the hard sphere 
fluid calculated from the radial distribution 
function. - . -. - Kirkwood equation; ........ . 
BBGYequation; ----- P-Y c-form; ---

0-6 P-Yv-form; -- exact 
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is no solution of the Kirkwood equation for '1 ~ 0·60 and of the BBGY expression 
for '1 ~ 0·50. These values of '1 are usually interpreted as limits of stability of the 
HS fluid within these theories. 

Better results obtained from the hierarchy of equations for g can be expected 
if higher order correlation functions are considered. Fisher and Kopeliovitsch 172 
proposed a "superposition-like" closure for g(4) == g(rt- r2 , r 3 , r4) and Ree and 
coworkers 17 3 solved the resulting set of two integro-differential equations. The 
results at two relatively low densities considered ('1 = 0·22 and 0·275) are in very 
good agreement with pseudoexperimental data. 

Integral equations for g. The basis of integral equation methods is the Ornstein­
-Zernicke equation (4.25) which relates the total correlation function, her), and the 
direct correlation function, c(r). The merit of the introduction of the direct cor­
relation function lies in the fact that the range where c(r) i= 0 is approximately the 
same as that of the pair potential of the studied system. This makes it possible to 
introduce - in combination with the application of the theory of graphs - several 
useful approximations. The most common ones are the Percus-Yevick (p-Y) and 
hypernetted chain (HNC) approximations. 

In the P-Y approximation174 it is assumed that 

cpy(r) = 0 for r > u 

whereas in the HNC (see refs in17S) 

CHNC(r) = her) - In [h(r) + 1] for r > u. 

(4.86) 

(4.87) 

For the HS fluid the HNC approximation is inferior to P-Y. Moreover, for the 
latter approximation an analytic solution for g(r) and hence the equation of state 
have been foundl77-179. The result for the direct correlation function reads for 
r < u as 

which after substituting in Eq. (4.26) yields the compressibility (c) form of the P-Y 
EOS: 

(c) . (4.89) 

For r = 1 

-c(l) = g(l) = (1 + '112)/(1 - '1)2, (4.90) 

so that from Eq. (4.6) the virial form of the EOS is obtained: 

(v) . (4.91) 
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Results of the (c) and (v) EOS for the P-Y approximation are compared in Fig. 9 
with the simulation data. It is seen that the (c)-form yields systematically higher 
and (v)-form systematically lower values of PP/e. The results of the HNC equation 
exhibit the same bracketing property with (v)- and (c)-forms reversed. The difference 
between the (c) and (v) values measures the quality of the approximation - e.g. 
for the HNC the difference at given 1] is always larger then for the P-Y. Moreover, 
this bracketing offers a possibility to combine empirically (c)- and (v)-forms to obtain 
a more accurate equation of state. For instance, on taking j of the (c)- and 1- of the 
(v)-forms of the P-Y theory results, the Carnahan-Starling EOS (4.44) is recovered. 

Similarly as for the integro-differential equations, the P-Y and HNC equations 
can be extended to the second order but this is not straightforward. Such extensions 
have been made by Verlet180.181 and Wertheim182 but both versions suffer from 
certain defects. Better way how to improve the performance of integral equations 
seems to make use of the inconsistency of the (v)- and (c)-forms of the EOS. "Self­
consistent" theories, i.e. those giving identical results from the virial and compres­
sibility equations, have been proposed e.g. by Rowlinson183, Hutchinson and 
Conkie184.185, and Verlet186. The common property of all these methods is that 
they are numerically very laborious which is not offset by the results. 

Relatively simple and at the same time very accurate equations have been proposed 
recently by Martynov and Sarkisov187 and by Verlet188. The direct correlation 
function in the former theory is given in terms of the background function y, 

CMS(r) = fy + y - 1 - In [Y(l + tIn y)] . (4.92) 

Verlet's theory is a bit more complicated but both theories are identical up to the 
In2 y order and yield the best results of all integral equations. Results and comparison 
of all above mentioned integral equation theories can be found in a recent mono­
graph by Malijevsky and coworkers189. 

Integro-differential and integral equations are general theories serving first of all 
for determining the structure of fluid. The only analytical solution has been found 
for the P-Y theory and although the resulting EOS is not perfect it is of great practical 
importance: it tells about the functional form of the EOS upon which better equa­
tions may be built. Recent attempts directing to developing a better theory indicate 
that the integral equations possess capacity of providing very good results but yet 
these are rather of only theoretical than of practical value. 

4.4.4. Discussion 

In the preceeding subsections we have already assessed individual methods within 
each family of the approaches considered. In this subsection, which completes the 
part dealing with the pure HS fluid, we compare and assess in more detail the dif­
ferent approaches and discuss the best results at present available. 
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In the graph {3p/e vs 17 the scale is usually so coarse that good methods yield 
results practically indistinguishable from simulation data. For this reason we show 
in Fig. 10 percentage deviations from the parametrized simulation data, Eq. (4.27). 
Erpenbeck and Wood's datallO used for the parametrization are shown as black 
circles whose size roughly corresponds to the experimental errors. The other data 
shown with error bars are those of Labik and Malijevsky114. 

Undoubtedly the most general approach is that via an integral equation for the 
radial distribution function. The best of these, the phenomenological closure of 
Verlet188 , exhibits deviations up to 2 percent which is more than do the other methods. 
But in the light of the fact that the integral equations do not contain any adjustable 
parameters (although a certain sort of guessing for deriving a closure and its a po­
steriori verification are required) the accuracy is very good. 

From the theories considered in Subsection 4.4.2., Eq. (4.70) of Speedy is the best. 
It is seen from Fig. 10 that it is very accurate and begins to deviate from the simula­
tion data only at the highest density. However, it is fair to remind that in the process 
of deriving Eq. (4.70) the virial coefficients B2 through Bs and the condition of zero 
free volume at the close-packing density were used as input information. 

In Fig. 7 we were not able to distinguish between the simulation data and Eqs 
(4.44), (4.46), and (4.49), and the truncated virial expansion with 10 terms. Eq. 
(4.46) remains to coincide with the parametrized simulation data even within the 
scale of the graph in Fig. 10 and the Carnahan-Starling equation (4.44) is seen also 
to retain its good accuracy. However, some doubts arise when examining the P(3, 3) 
and PEW approximants, and the vi rial expansion. First, one would expect the virial 
expansion to systematically underestimate the compressibility factor and this is not 
the case here. Further, one would also expect the P(3, 3) approximant to peform much 

2,-----,---------,-----,-----, 

FIG. IO 
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equations of state from the parametrized 
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better. Erpenbeck and WoodllO fitted the virial coefficients B6 and B7 so as to get 
the best fit with their data. They obtained 

(4.93) 

and the resulting approximant PEW only slightly deviates from Eq. (4.27) at the 
highest densities. They then argued that the "fitted" estimates of B6 and B7 , Eq. 
(4.93), might be more accurate than Kratky's values listed in Table II. When the 
coefficients from Eq. (4.93) are used in place of those from Table II in the truncated 
virial expansion, the positive bump in Fig. 10 practically disappears and the virial 
expansion tends to underestimate the compressibility factor over the entire density 
range. Also the regular P(3, 3) approximant based on the above values of B6 and B7 
performs much better and we thus incline to support Erpenbeck and Wood's view 
and to recommend to use for B6 and B7 the values given by Eq. (4.93) instead of 
those of Kratky, see Table II. In any case, a new direct estimate of B6 and B7 would 
provide stronger arguments. 

As regards the equations of state, the most frequently used Carnahan-Starling 
equation does seem to be quite good but equally simple and much better is the new 
equation (4.46). Advantage of these two equations is also their "definiteness": 
they have not been fitted to any simulation data and new simulation data thus cannot 
affect their parameters. 

4.5. Nonspherical Body Fluids 

Methods developed for the HS fluid discussed in the preceding section paved the 
way for studying more complicated nonspherical body fluids. With only one excep­
tion, all theories for nonspherical bodies represent extension of those developed 
for hard spheres or, generally, for simple fluids. Evidently, not all methods can be 
extended. Those which have been extended are the scaled particle theory, certain 
cell theories, methods based on the knowledge of virial coefficients, and integral 
equations. Some methods were extended first to convex bodies and only then, often 
empirically, to FHS models. 

The most logical way of dealing with theories of nonspherical body systems 
would begin with vi rial expansions and their resummations. However, because of 
the limited knowledge of the virial coefficients even for the simplest members of 
the family of non-spherical bodies and also because of the fact that the nonsphericity 
parameter is introduced within the SPT in an essential way, we follow a different 
scheme. We begin with general formulation of the SPT and improved SPT which 
are followed by the SPT variants proposed for specific systems, namely for prolate 
spherocylinders and homonuclear diatomics. Then we comlder virial expansions, 
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their resummations, and equations of state which employ the SPT forms and gener­
alized expressions for the virial coefficients. 

In addition to the above methods there are perturbation theories discussed in Sub­
section 4.5.3., whose idea is to avoid the mathematical complexity by transforming 
the nonspherical bodies to suitable hard spheres or "soft" (i.e. with a repulsive tail) 
spheres. Since the hard body fluids are not the ultimate goal of our endeavour 
to develop a molecular theory of fluids, this may be viewed as a step back. However, 
the perturbation schemes are usually more general and their application to hard 
body fluids serves as one of simple tests. 

4.5.1. Extended Scaled Particle Theory 

The first attempt to extend the SPT to hard convex bodies was made by Ritchie190 

who, however, did not get a closed analytic expression. This was obtained by Gib­
bons66.191, who expressed the CB geometric functionals !JIl, [/ and "Y in terms of 
a "characteristic radius", R, 

(4.94) 

and assumed intuitively the validity of the polynomial 

W(R) = W(O) + W'(O) R + tw"(O) R2 + PV, (4.95) 

employed originally by Reiss and coworkers1S3 for the reversible work, W, required 
for creating a cavity of diameter R in the HS fluid. Then, in an analogy with HS, 
Gibbons wrote down the expression for the chemical potential and from thermo­
dynamic relationships he obtained the equation of state: 

(4.96) 

where IX is the usual parameter of nonsphericity, Eq. (3.29). This equation was later 
re-derived by Boublik 14 by means of microscopic arguments and using well-defined 
approximations. After introducing the average distribution function ~av(e), (Eq. 
(4.10», the chemical potential can be written as (e/. Eq. (4.55» 

For ~(8, cp, ro, e) Boublik used an extension of the interpolation formula for ~HS' 
Eq. (4.60). Three coefficients of that formula were determined from the known 
values of ~av(o), a~av(O)lae, and the relation between ~av( <X) and ~av(1). Then for 
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~av(l) it follows 

1 3", n 3",2 n 2 
~av(1) = __ + "" ., + __ "" __ '-,--'_ 

1 - '1 (1 + 30()(t - '1)2 (1 + 30()(l - '1)3 
(4.98) 

After substituting (4.98) into (4.12), equation of state (4.96) is recovered. 

Eq. (4.96) was originally derived for CB systems. Following the same approach 
as that for obtaining the second vi rial coefficient of FHS models (c/. Section 3.3.), 
Boubliks9 extended the above formulation also to linear homo nuclear FHS models. 
He showed that if a "mean radius" of the FHS body is defined as 

3i = 0-(1 + L12)/2 , (4.99) 

(where L is the separation between the outermost sites), the actual values of l' FHS 
and 9'FHS are used, and if the small term £\v in the expression for 1'1+2 (see Eq. 
(3.48» is neglected, Eq. (4.96) is obtained. 

In the special case of homonuclear diatomics parameter 0( is explicitly given by 

(t + L)(2 + L) 0(= . 
2 + 3L - L3 

(4.100) 

To determine ~av(l) and hence the EOS it was necessary to introduce an approxi­
mate expression for ~(e, 8, cp, co). This can be avoided by employing the thermo­
dynamic expression for the reversible work1S3, 

d W = P d"f" + y d9' , (4.101) 

where y is the surface tension and d1' and d9' are, respectively, changes in volume 
and surface area of a cavity. Kirkwood and Buff192 showed that for a spherical 
('avity of not too small radius r it holds: 

y = Yo(1 + blr). (4.102) 

Specifying in a special way the dilatation of convex bodies and assuming that Eq. 
(4.102) holds for any molecular shape and size, Nezbeda 76 also re-derived the 
original Gibbons equation (4.96). 

A consequence of employing the thermodynamic relation (4.101) in the process 
of deriving the EOS is the possibility to obtain, in addition to the EOS, also the 
surface tension of a fluid at a hard wall. It should be mentioned, however, that the 
application of the thermodynamic (i.e. macroscopic) relation (4.102) to a single 
particle is, rigorously speaking, not correct and so it is justified only a posteriori. 
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Eq. (4.96) and, consequently, the vi rial coefficients given by 

Bi = 1 + 3(X(i - t) + tlX2(i - 1)(i - 2), i ~ 2 (4.103) 

exhibit the same features as Eq. (4.61) for hard spheres. The second virial coefficient 
is exact (for CB models) and the third one is in good agreement with numerical data 
at small (X. Higher vi rial coefficients give systematically higher values in comparison 
with the computer data. Consequently, Eq. (4.96) overestimates the compressibility 
factor (see Figs 11 and 12). This property of the SPT has been generalized by Nezbeda 
and coworkers51 into a conjecture 

(4.104) 

valid for all RB fluids at the same number density and used to test accuracy of some 
simulation data. 

For CI. -. 1 Eq. (4.96) reduces to Eq. (4.61) which is not very accurate and one would 
naturally wish a RB equation to reduce to the Carnahan-Starling or any other 
accurate RS equation for (X -. 1. An improved version of Eq. (4.96) satisfying this 
condition has been proposed by BoubIik193• It was shown194 that the C-8 equation, 
Eq. (4.44), can also be obtained from the 8PT by modifying the coefficient of the 
last term in the polynomial for ~(~) at ~ = 1. Using the same approach for CB 
Boublik obtained the equation (improved 8PT equation, ISPT) 

(4.105) 

The virial coefficients B2 and B3 given by this improved equation remain unchanged, 
see Eq. (4.103), while the higher coefficients are slightly reduced. It holds: 

Bi = t + 3(X(i - 1) + (X2j(i - 2), i ~ 2. (4.106) 

For i = 4, this equation reproduces surprisingly well the data of oblate sphero­
cylinders but for other models it seems good for low nonsphericities only (see 
Table XVIII). The compressibility factor given by· (4.105) begins to deviate from the 
simulation data already at medium densities and (X ~ 1·2 (see Figs 11 and 12). 

Equations derived within the SPT are usually associated with CB fluids. Eq. 
(4.105) can be evidently used also for the class of FRS models for which the parameter 
(X can be defined. An extension of Eq. (4.105) to any FRS model is discussed in the 
next subsection. 

Both the SPT and ISPT equations discussed above are quite general and can be 
applied to any CB fluid. A 8PT equation, good only for the system of prolate sphero­
cylinders, has been derived by Cotter and Martire195 and Lasher196 who followed 
an approach different from that described above. Cotter and Martire discretized 
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FIG. 11 

Compressibility factors of prolate spherocylinders with the length-to-breadth ratio equal to 2 
(lower set) and 3 (upper set). - .. -.- Eq. (4.96); - •.. - Eq. (4.105); ----- Eq. (4.107); --
Eqs (4.117) and (4.118); ........... Eq. (4.119); --- the virial expansion; • pseudoexperimental 
data 
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FIG. 12 

Compressibility factors of oblate ellipsoids of the axis ratio A = 0·5. -.-.- Eq. (4.96); _ ... -
Eq. (4.105); ----- Eq. (4.117); --- Eq. (4.118); • pseudoexperimental data 
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orientations of spherocylinders and considered then only the orientations in direc-
tions of three axis of the solid coordinate system. They scaled independently the 
length and breadth of the core of the spherocylinder and arrived at the equation 

PP/e = [1 + 17(3y2 - 3y + 2)/(3y - 1) + 
+ 17 2(3 y3 + 3y2 - 3y + 1)/(3y - lYJ/(l - 17)3. (4.107) 

TABLE XVIII 

Comparison of the fourth virial coefficients, B4!"f/'3, of convex body models given by approxi-
mate equations of state with exact data 

Para- Eq. Eq. Eq. Eq. Eq. Exact C1. T 
meter (4.105) (4.117) (4.118) (4.119) (4.120) 

Prolate spherocylinders 

r 
1-6 1'095 1·056 20'45 19'98 19'93 20'06 20·11 20'50 
2·0 1'200 H25 23'32 22'12 22·12 22'36 22-48 22'50 
3·0 1'500 1'333 ?2'50 28'00 28'75 29·13 29·47 28'00 
4'0 1'818 1'562 43'81 33-84 36·37 36'67 37'29 31-90 
5'0 2·143 1·800 57'02 39'39 44·78 44'78 45'68 33-10 

Oblate spherocylinders 

rp(= r- 1) 

1'0 1-129 1·038 21'36 20'67 20'63 21'08 21-14 21'65 
21'79 

1'5 1'234 1-059 24'29 22'80 22'84 23'78 23-89 24'76 
24'51 

2·0 1'348 1'076 27'67 25'06 25'32 26'90 27'03 28·22 
27'78 

2'636 1'500 1'094 32'50 28'00 28'75 31'34 31-47 31'90 
"'0 1'589 1'103 35'50 29'67 30·82 34'09 34-20 36'35 

Diamond (aD = 0·02) 

y 

2'568 1'500 1'422 32'50 28'00 28'75 28'49 28·84 28'00 

Drop (aB = 0'02) 

2'347 1'500 1'422 32'50 28'00 28'75 28'49 28'84 26'00 

Cube 

a 1'500 1·178 32'50 28'00 28'75 30'46 30·71 42'00 

Collection Czechoslovak Chem. Commun. [Vol. 51) [1986) 



2376 Boublik, Nezbeda: 

Eq. (4.107) yields the exact value of B2 , but values of B3 , given by 

B3 = (30y3 + 21y2 - 12y + 1)/(3y - 1), (4.108) 

are systematically lowerso• On the other hand, the fourth virial coefficient produced 
by Eq. (4.107) overestimates the correct values52, which leads to compensations 
in the EOS. As a result, Eq. (4.107) performs better than the original SPT equation 
(4.96) as it is seen from Fig. 11. In subsequent papers Cotter197 and also Savithramma 
and Madhusudana198 considered the continuous distribution of orientations; how­
ever, for the isotropic fluid the equation of state remained unchanged. 

An obstacle for extending the SPT to FHS models without resorting to a "CB-like" 
approach is the lack of a general rxpression for the 2nd virial coefficient. Con­
sequently, the SPT has been independently extended only to homonuclear diatomics1s. 
To evaluate analytically certain integrals, Nezbeda15 neglected •.....• bonds (c/. 
Section 3.3.) in expressions for a pair of dumbells and obtained the following EOS: 

(4.109) 

Due to additional approximations involved, this equation does not give the exact 
2nd vi rial coefficient but the approximate expression (3.56). Nevertheless, similarity 
between the CB equation of state, Eq. (4.96), and Eq. (4.109), and the fact that the 
coefficients at the second and third terms are almost identical and in a close relation 
to (X defined by (4.100) are striking. On comparing Eqs (4.96) and (4.109) it is seen 
that they would possess exactly the same form if it were not for the different coeffi­
cients at L4 and one may suspect the additional approximations used in deriving 
(4.109) of causing this difference. Since usually L ~ 1, these terms can be completely 
neglected or, for instance, the term L4 /6 in the second fraction can be simply replaced 
by - L4 /2 which results64 in both cases in the equation identical to the SPT equation 
(4.96) with the (X-parameter defined by (for the latter choice) 

(X = 1 + !L + iL2 - iL4 
I + !L- tL3 

(4.110) 

(X given by this equation is identical to (X given by (4.100) up to ~(L2). In Fig. 13 we 
show the SPT results for two HOMO DB with (X given by Eq. (4.100). It is 
seen that the agreement is the same as that for convex bodies (cr. Figs 11 and 12). 
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4.5.2. Expansions, Resummations, and Semi-Empirical Methods 

In comparison with the HS fluid, the potentialities of expansion and resummation 
methods for nonspherical HB fluids are rather limited because of limited knowledge 
of the virial coefficients. One can count at best with five coefficients only, with B2 
through B4 computed directly and Bs either computed or estimated from (3.64) or 
(3.66). This makes it possible to set up at maximum either a common P(3, 2) ap­
proximant or Alder-Hoover's P(2, 2) approximant, P AH (e/. Eq. (4.51». Additional 
drawback of these methods is that at least one more parameter describing the non­
sphericity of the model is required. Consequently, the resulting EOS may be good 
for one specific model only, unless the virial coefficients are parametrized. 

Nezbeda34 applied both P(3, 2) and P AH to all HB fluids for which the simulation 
data were available and obtained the expected results: (i) the two approximants 
are always accurate up to medium density range; (ii) P(3, 2) approximant tends to 
overestimate the correct values and P AH usually tends to underestimate them; (iii) it 
cannot be said that they perform worse with increasing non sphericity . For instance, 
for the fluid of PSC with y = 3 the P(3, 2) approximant matches the simulation data 

20r-----r-----.-----.-----.---nn 

FIG. 13 

OPIp 

1<1 

o 0'2 0·5 

Compressibility factors of homonuc\ear dumbells of L = 0'6 (lower set) and 1 (upper set). 
-.-.- Eq. (4.96); ----- Eq. (4.105) with rt from Rigby's rule; ~-- the virial expansion; 
. -- exact. Eq. (4.105) with rt from the B-N method is indistinquishable from the exact 
data within the scale of the graph 
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for all densities while for "I = 2 it does not; (iv) P AH approximant is surprisingly good 
for the OSC and nonlinear triatomic fluids. In summary, performance of the two 
approximants is quite unpredictable which is in agreement with our conclusions 
for the HS fluid. 

It is possible to view the functional form of the C-S equation or of the ISPT equa­
tion also as a PA. However, an attempt'° to improve their performance by fitting 
their coefficients to B2 through B4 has failed as well. For hard spheres such an equa­
tion is inferior to the C-S equation (which yields the exact third but not fourth virial 
coefficient) and for nonspherical body fluids the results are comparable to the 
Barboy-Gelbart expansion (see below). 

A chance to do better may have faster converging methods requiring first few 
virial coefficients only, such as, e.g., approximant p ... (i.e. a PA applied to function q> 

in (4.52) or the Barboy-Gelbart method, Eq. (4.53). These two methods were also 
considered by Nezbeda34 and while the Barboy-Gelbart method surprisingly fails, 
the p ... approximant seems to be the best of all considered. It agrees with the simula­
tion data over the entire density range for all linear models but fails for the OSC 
fluid of high non sphericity and for the nonlinear triatomic fluid. Concerning the 
latter fluid, there may be a simple reason. The starting equation for the p ... approxi­
mant, Eq. (4.52), has the form obtained from the SPT for convex bodies. It is known60 

that the nonlinear triatomic fluid exhibits certain properties not found in its CB 
counterpart and differs thus so much from it that Eq. (4.52) need not be appropriate 
for the fluid oftriatomics. However, this cannot be the case ofOSC for which (4'52) 
is undoubtedly correct. Detailed discussion on this and other peculiarities of the 
OSC fluid we postpone to the end of this section. 

Virial expansion (3.1) represents a correction to the ideal gas which may be con­
sidered as a reference system. If another system is used as the reference, then the 
virial expansion assumes the form 

PPje = (PPje)ref + L (B; - Bi,ref) e'-1 , (4.II 1) 
i>1 

where B;,ref are the virial coefficients of the reference system. For the HB fluids 
a natural choice for the reference is the HS fluid (at the same packing fraction) 
for it captures a good deal of the HB fluid behaviour. With this choice Eq. (4.1II) 
may provide a lower bound of the compressibility factor. Nezbeda34 has conjectured 
that for all realistic models it holds 

M 

PPje ~ (PPje)HS + I (Bj - Bj,HS) el - 1 (4. II 2) 
1>1 

and the validity of this inequality seems to be supported by all known computer 
data. Comparison with the simulation data shows that Eq. (4.II2) performs sur-
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prisingly we1l34 : In the low and medium density ranges the righ-hand side of (4.112) 
agrees with them within the experimental errors and only at high density it begins 
to underestimate {3p/Q in accordance with (4.112). 

From the results discussed in Section 4.4. it seems that the best method for ob­
taining the EOS is that based on an estimation of all virial coefficients because it 
enables us to sum up the entire expansion. For this reason a certain parametrization 
of the virial coefficients is required which, consequently, leads to a more general 
EOS than that obtained by any of the above discussed methods. 

The recursion formula (4.42) may be extended to convex bodies by writing 

Bi = 1 + f2(a)(i - 1) + f3(a)(i - l)(i - 2) + fia)(i - 2)(i - 3). (4.113) 

If we require that 

(4.114) 

the C-S equation is recovered for a = 1. The function f2(a) follows exactly from the 
second virial coefficient, 

fl(a) = 3a, (4.115) 

while f3' f4 require an empirical guess. Analyzing the virial coefficient data of prolate 
spherocylinders Nezbeda52 showed that they are accurately fitted by 

f3(a) = Hal + 40.: - 2) 

f4(a) = -tct(5a - 4). (4.116) 

Summing up the virial expansion with Bi given by (4.113), (4.115), and (4.116), the 
following equation is obtained: 

(4.117) 

This equation agrees with the simulation data of the PSC fluid throughout the entire 
fluid density range and up to high elongation (see Fig. 11). Although Eq. (4.117) 
has a general form, it is worth reminding that it has been tailored for prolate sphero­
cylinders and for other CB fluids it can be used only for not too large a, i.e., in the 
case when the conformity of CB fluids approximately holds (see Fig. 12). 

In order not to relate the EOS so tightly to one specific system only, Boublik65 

followed the same way as above but used general approximate expressions (3.58) 
and (3.59) for B3 and B4 to determine fl' f3' and f4' The resulting equation has the 
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appearance 

PP/e = 1 + (3oe - 2)" + (3oe2 - 30e + 1) 112 - oe(6oe - 5) 113 

(1 - 11Y 
(4.118) 

From the practical point of view there is no great difference between the results 
given by Eqs (4.117) and (4.118). Advantage of Eq. (4.118) may be that (i) it yields 
more realistic expressions for B j and (ii) it can be quite simply extended to mixtures. 
However, since it describes the CB fluids again by only one parameter, its general 
applicability is also limited to small and medium oe. 

In Subsection 3.2.3. we have already discussed the necessity of introducing an ad­
ditional parameter of nonsphericity to account for different shapes of CB of the 
same oe. Naumann and Lelland67 (N-L) introduced quite empirically a second 
parameter T by Eq. (3.62) and their equation possesses the form 

PP/e = {I + (3oe - 2)11 + [loe2(1 + T- 1) - 30e + IJ112-

- toe2 [5 - 3T- 1J 113 - 7oe2(1 - T-l),,4}/(1 - 11)3. (4.119) 

It contains one extra term over the C-S type equation but for spheres 't' = 1 and Eq. 
(4.119) reduces thus to the C-S equation. Another two-parameter equation of state 
has been derived by Boublik199 within his attempt to approximate the CB average 
correlation function on the basis of that of HS. The equation has the form 

(4.120) 

where ~ is the ratio of the surface areas of a given CB and of the equivalent HS (i.e. 
of the same volume); for example, for prolate spherocylinders it holds 

~ = y/[(3y - 1)/2]2/3 • (4.121) 

For systems characterized by a mild nonsphericity (small oe) Eqs (4.119) and (4.120) 
yield results very similar to those obtained from the one-parameter equations (4.117) 
and (4.118). It is therefore interesting to compare the four equations in extreme 
cases, when the latter equations «4.117) and (4.118» are definitely outside the range 
of their guaranteed applicability. 

In Table XVIII we compare the 4th virial coefficients given by the four above 
-considered equations for PSC up to large elongations. It is seen that the Naumann-
-Leland results are practically identical to those of the Boublik Bl equation (4.118) 
and both are inferior to Nezbeda's results. 

The other extreme system for which exact data are available is that of infinitely 
thin platelets. In this case oe - 00 and -r - 0 with 3oe11 = dtf/e = B2e, and the 
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four equations assume the forms 

PPje = 1 + B2e + tB~e2 (N) 

PPje = 1 + B2e + -!B~e2 (Bl) 

PPje = 1 + B2e + iB~(1 + 81t- 2 ) e2 (N-L) 

PPje = 1 + B2 (! • (B2) 

The third virial coefficients thus are 

0·1692 
0·0423 
0·1268 
0·1148 
0·0 

exact 
(N) 
(B1) 
(N-L) 
(B2) , 

2381 

(4.122) 

(4.123) 

(4.124) 

(4.125) 

while all higher virial coefficients are zero from all equations. It is seen the B1 and 
N-L are again quite similar and not too bad while the B2 equation completely 
fails. If we compare the compressibility factors, then Boublik's Bl and Naumann­
-Leland's equations agree well with the virial expansion of the fifth order (based 
on MC data) but overestimate the pressure at high densities where, on the other 
hand, the Nezbeda equation performs well. 

The above discussed results produced by both two-parameter EOS are in no way 
encouraging. Although originally introduced as tools to distinguish between different 
shapes, the parameter T as well as the parameter, fail to do so for diamonds and 
drops, see Table XVIII. As a result, the application of these parameters and con­
sequently of equations (4.119) and (4.120) does not seem well justified. 

In the preceding subsection it has been shown that certain FRS models can also 
be characterized by means of the parameter IX. For these models the ISPT equation 
can be evidently used as well. It seems thus natural to assume that the ISPT equation 
can be applied to any FRS fluid provided that the parameter of nonsphericity is 
suitably defined. (An exception may be quite artificial model considered recently 
by Malijevsky and Labik31). This was made first quite empirically by Rigby200 

and by Boublik and Nezbeda61 • The former author evaluates <X from the correct 
value of B2 using Eq. (3.28). The latter authors make use of the similarity between 
the CB and FRS models and determine IX from Eq. (3.29) using for the volume 
and surface area the actual values of the FRS body considered and for /Jl the value 
given by an enveloping convex body. Later on, Boublik59 showed that this method 
has a sound theoretical basis (see Subsection 4.5.1.). For most systems considered 
the Rigby (R) and Boublik-Nezbeda (B-N) methods yield similar results with the 
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latter being better. The difference becomes more pronounced for tetrahedral penta­
atomics63• Surprisingly, agreement with exact data is usually better for the compres­
sibility factor than for virial coefficients (see Table XIX). This is especially remark­
able for nonlinear triatomics and indicates that fortituous cancellations take place. 
Accuracy of the B-N method is very good for homonuclear linear models (see Fig. 
13) and deteriorates, in general, with increasing heterogeneousness of bodies. 

The CB fluid equations of state (4.117) and (4.118) are definitely better than the 
SPT and ISPT equations and one would naturally assume that they should be also 
used for FHS models instead of the latter equations. However, when this is done 
the results are rather bad due to the fact that for FHS models the geometric function­
als employed for determining the parameter oc are only approximate. In an atempt 
to use the accurate CB fluid equations also for diatomics, Abascal and Lag0201 

employed another definition of oc. They argue that the diatomic molecules (and, 
similarly, any other FHS bodies) do not experience the actual volume f but a slightly 
larger one (see also a Discussion in ref. 31). Writing for the "corrected" volume 
feor of HOMO DB 

(4.126) 

with 

h = (1 - L2/4)1/2, 8 = arcsin (L/2) (4.127) 

they define oc by 

(4.128) 

Although this definition is correct for some CB, for FHS and many CB models the 
derivatives of the volume with respect to f1 are not related to g and {#t, and so the 
a's calculated from (3.29) and (4.128) are different. Other two points which hinder 
further applications of the Abascal-Lago method are: (i) the good agreement of B2 
given by OCB-N and exact f FHs deteriorates when using (4.126) and (4.128); (ii) the 
determination of feor is theoretically difficult for heteronuclear FHS and mixtures. 
(F or an analytical evaluation of f FHS of a few special models see ref. 202). 

4.5.3. Perturbation Theories and Integral Equations 

The basic idea of perturbation theories is to estimate properties of the considered 
system by means of a simpler reference system whose properties are known. For 
hard nonspherical bodies such reference systems are either bare hard spheres or hard 
spheres with a soft repulsive tail. Besides the methods originally proposed for simple 
fluids and then extended to molecular fluids (Barker-Henderson theory, the blip­
-function approximation; for details and references see ref. 203), there are theories 
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devised solely for molecular fluids. The most important of these are the Gubbins­
-Gray theory3.4, RAM theory9, median potential20\ and the conformal theorlo5. 
The first one is, however, inapplicable to HB fluids. 

The simplest approach is to evaluate the pressure of a HB fluid from the EOS 
of hard spheres of a certain effective volume "f/ HS,eff' For this purpose the Carnahan­
-Starling equation is usually used because of its simplicity. In the present review we 

TABLE XIX 

Comparison of the third and fourth virial coefficients of the FHS models given by approximate 
equations of state with exact data. The improved SPT equation, Eq. (4.105), has been used. 
B-N and R denote the Boublik-Nezbeda and Rigby methods, respectively, of determining the 
parameter a 

B3/"f/"2 B4/"f/"3 

B-N R exact B-N R exact 

Homonuclear diatomics 

L 

0·2 10-22 10·21 10·23 18-46 18-46 19·43 
0·4 10-87 10·86 10-94 19-83 19-81 20-35 
0·6 12·01 11'97 12-13 22·22 22·15 23-10 
0·8 13·82 13'71 14'04 26·11 25·88 27'61 
1'0 16·75 16·47 17'04 32-50 31-89 34'52 

Heteronuclear diatomics 

L O'B 

0'50 0·5556 11-14 11'03 11'12 20·40 20·16 20'91 
0'50 0'6667 11'37 11-31 11'48 20'88 20'76 21-61 
0'50 0'8333 II-50 11·43 11- 51 21·16 21'01 21-70 
0'80 0'60 14·85 14'70 15'20 28'35 28·03 30'80 

Linear symmetric triatomics 

L O'A 

0'575 0·15 10'96 10'92 IHO 20'02 19·94 21'00 
0·80 0·60 20·55 19'83 20'50 40'94 39'33 42·20 
1'0 1'0 25'00 24·12 24'50 51'00 49'01 48·90 

Tetrahedral penta-atomics 

LAC O'A 

0'5206 1'0294 15'05 14'44 15-26 28-78 27-46 32-29 
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use the new better Eq. (4.46): 

"Ierr = e"Y HS.err . (4.129) 

If the simulation data for PP/e are used in this equation, then l' HS.err can be evaluated 
and its density dependence provides an indication to what extent the HS fluid can 
approximate the nonspherical body fluid in question. In Fig. 14 we plot "r HS.err/"Y 
versus "I for three different systems: PSC of y = 3, HOMO DB of L = 0·6, and tetra­
hedral penta-atomics. It is seen that the ratio l' Hs.err/"Y is a monotonicaly decreasing 
function with the upper bound given by the low density limit and the lower bound 
by the volume of the original molecule. Further, the difference between the upper 
and lower bounds increases with increasing nonsphericity. Consequently, 110 density­
-independent HS fluid can fit correctly the P-V-T behaviour of a nonspherical HB 
fluid over a wide density range. 

The problem of approximating nonspherical HB fluids by bare hard spheres was 
investigated intensively quite recently by Williams and coworkers206.207 who con­
sidered the median potential and the Barker-Henderson theory. A third possibility 
to determine an equivalent HS is the conformal theory of Nezbeda and Leland 
proposed several years ago208• 

The median potential Umed(r) is defined by the relation204 

1-38,--,----,--,----.-----, 

tr."I1f" 

.................. 
......................... 

.......... -.....-.-120 

--------------------

(4.130) 

FIG. 14 

The dependence of the effective volume of 
hard spheres on density calculated from Eq. 
(4.117) for prolate spherocylinders of)' = 3 
(--) and from Eq. (4.105) for homo­
nuclear dumbells of L = 0·6 (- - -) and 
tetrahedron penta-atomics (-.-.-) 
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For HB interactions it is more convenient to make use of the fact that (i) the median 
minimizes the sum of absolute deviations and (ii) if Uo = med (u) then also <p(uo) = 

= med [<p(u)] for arbitrary <p. Eq. (4.130) is thus equivalent to the condition that 
functional (4.131), 

j{exp [ -pu(r, COJ' co2)] - exp [-PUrned(r)]} dco! dco2 , (4.131) 

is minimized by Urn_d' From here it immediately follows that if u is a HB potential 
then Urned is the HS potential with the diameter (Teff defined by 

(4.132) 

Results obtained from the median potential are nearly identical to those obtained 
from the Barker-Henderson theory206 which defines (T.ff' in general, by 

(4.133) 

For hard bodies this equation reads as 

(T~rfH = fR(COh CO2) dCO J dco2 (4.134) 

which is identical to the expression proposed many years ago by Bellemans109. 
In (4.134) R(coJ, co2) is the closest approach distance for two molecules at angular 
configurations COi' 

In Tables XX and XXI we compare the results based on the median potential 
with simulation data. The median EOS yields the results which at low densities are 
lower and at high densities higher than the experimental data. It is thus evident that 
somewhere in between there must be a region where the agreement is perfect. With 
increasing nonsphericity the region of such good agreement however shrinks to a very 
narrowone. 

In the conformal theory (considered for CB only) the configurational partition 
function is expanded in powers of an appropriate functional and the effective volume 
is obtained by annuIJing the first order term. The result is108 

1 + 60cx 
i/ HS .ff!i/ = , 

• 1 + 6x 
(4.135) 

where x is an adjustable parameter. There is no exact mathematical route enabling 
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TABLE XX 
Compressibility factors of prolate spherocylinders calculated from perturbation and conformal 
theories 

{JP/a 

exact RAMb medianc conformald 

2 0·15 2·07" 2·04 1·99 2·04 
0·20 2·65 2-63 2·56 2·65 

2-69 
0·30 4·48 4·43 4·40 4·68 
0·40 8·18 7·19 8·05 8·84 

8·20 
0·45 11·02" 9·34 11·24 12·57 
0·50 15·20 16·09 18-44 

3 0·20 3·07 2·68 3·08 
0·30 5040 4·75 6·01 
0·40 9·60 9·06 13·00 
0·45 13·00 12-95 20·22 
0·50 18·00 19·13 33-21 
0·54 23·33 26·90 52·06 

a Calculated from the Nezbeda equation of state, Eq. (4.117). b First order RAM theory result 
(taken from ref.222). C Calculated from Eq. (4.46) with aHS given by Eq. (4.132). d Calculated 
from Eq. (4.46) with a~s = 3(1 + It) 1I'sc/tt. 

TABLE XXI 

Compressibility factors of homonuc\ear diatomics of L = 0·6 calculated from perturbation and 
integral equation theories 

{JP /a 

" exact RAM" medianb RHNC" 

0·2094 2·78 2-82 2·71 2·82 
0·3142 4·95 5·01 4·86 5·18 
0·4189 9·23 9·49 9·36 10·67 
0·4712 12·87 13·21 13·49 

" Zeroth order RAM theory, Eq. (4.138); taken from ref.223. b Calculated from Eq. (4.46) with 
aH'l given by Eq. (4.132). C "Reference" HNC theory; taken from ref.227. 
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one to choose x unambiguously and it is therefore necessary to argue on the basis 
of either physical requirements or some analogies. For x = 0 the lower bound is 
recovered, "I' HS,err = "1', while for x --+ ex) we get "I' Hs,efr!f = oc. The exact upper 
bound (i.e. low density value) corresponds to x = 1/2. Nezbeda and Leland took 
the mean value (1 + oc)/2 corresponding to x = 116 and reported very good results 
for the PSC of '}' = 2 up to " ;:S 0·35. In general, the conformal theory produces 
good results at low and medium densities while rapid deterioration of the results 
with increasing nonsphericity is observed, see Tables XX and XXI. 

The other group of theories either introduces a density-dependent reference HS 
(blip-function theory) or hard spheres with a soft repulsive tail (RAM theory). It 
might be anticipated that these methods would do better than the conformal or 
median theories but they suffer from one important disadvantage: they require much 
more computer calculations and do not provide the EOS in a closed form unless 
a certain parametrization is made. Also the IMIS (independent-molecular-inter­
action-sites) theory, proposed independently by Naumann and Lippert210 and 
Nezbeda and Smith211 , belongs into this family of theories. This theory is identical 
to the RAM theory for homonuclear models. For heteronuclear models it transforms 
the original fluid to a simple fluid mixture which, however, was shown212 to be a very 
poor approximation. 

The blip-function theory, originally proposed for simple fluids213 with short­
-ranged repulsions, was shown to converge slowly for molecular fluids 214• It defines 
the reference hard sphere fluid from the requirement that the free energy of both 
fluids be identical to first order, which leads to the equation 

f{ eav(r) - exp [ - PUHS,eff(r)]} YHS(r) dr = 0 . (4.136) 

Nezbeda2lS considered the fluid of PSC and obtained good results only for small 
elongations. Further, for,}, = 2 the results were reasonable only at very low densities 
which is in full agreement with Sung and Chandler's qualitative estimation of the 
blip-function usefulness214• 

The RAM theory defines218 ,219 the reference potential via the average Boltzmann 
factor, 

(4.137) 

The potential contains a hard core corresponding to the closest separation distance 
and a soft repulsive tail accounting for a gradual increase of rotational freedom of 
a pair of particles with increasing their separation. To determine properties of the 
simple fluid reference the blip function could be used, at least in principle, but due 
to a slowly decaying repulsions spread over a wide range the results would be defini-

Collection Czechoslovak Chern. Commun. [Vol. 51) (1986) 



2388 BoubIik, Nezbeda: 

tely rather bad. Labik and coworkers220 extended therefore the EXP approximation 
to this type of potentials, which makes the evaluation of the pressure even more 
complicated. Another possibility is to use the "corrected" HNC equation which 
was shown to be the most accurate of all integral equations221 . Comparison of the 
final results with simulation data shows that the reference fluid approximates the 
EOS of the HB fluids very poorly (see e.g. Table III in ref. 222). It is therefore 
necessary to evaluate the first order corrections to the Helmholtz free energy. Very 
good results are then obtained for low and medium nonsphericities, see Table XX. 

Instead of evaluating the pressure of a molecular fluid directly from the expres­
sions given by the RAM theory, this theory can be also used in another way. From 
Eq. (4.19) it follows that for FHS fluids we need two pieces of information: contact 
values of the site-site correlation functions Gap and their (lOO)-spherical harmonic 
expansion coefficients. For the reduced coefficients (of linear models) the zeroth-order 
RAM theory gives9 

(4.138) 

where eklm is the spherical harmonic expansion coefficient of the Boltzmann factor 
exp [-pu(l, 2)]. Eq (4.138) is exact for r -+ reontaet for certain FHS models and 
very accurate for others. If Gap{r) is available from some source, it can be then 
combined with Eq. (4.138) to calculate pressure from (4.19). Nezbeda and Smith223 

tested this way using the simulation data for Gap and obtained very good results 
for all HB fluids considered. In Table XXI the results are displayed for HOMO DB 
of L = 0·6. The RAM theory results obtained via the above discussed route are in 
no way worse than those from the median EOS. 

The last group of theories we may mention here are integral equations. The output 
of these equations are correlation functions and so they are better suited for describing 
the structure than for the P-V-T behaviour of fluids. None of them yields the EOS 
in a closed analytical form. All integral equations represent extensions of equations 
and relations proposed originally for simple fluids. With the only exception, the 
RISM theory of Andersen and Chandler224, until recently only a low density solu­
tion of the P-Y equation for PSC was known225 . Lad0226 recently proposed a method 
of solving numerically integral equations and did calculations for the RHNC (refe­
rence HNC) equation for HOMO DB fluids 227. At low densities the computed 
values are uniformly good. With increasing density a dependence on elongation 
becomes more pronounced and the computed pressure quickly deteriorates. The 
RISM theory provides us with the set of the site-site correlation functions Gap for 
FHS models. Besides certain defects of the theory itself (e.g. incorrect low density 
limit), the complicated routes via the Helmholtz free energy or via the compressibility 
equation must be used if unreliable contact values of Gap for obtaining the EOS 
are to be avoided120.228. This is another deterrence to use this theory to calculate 
the thermodynamic properties. 
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4.5.4. Discussion 

Similarly to the HS fluid, a number of EOS has been proposed also for nonspherical 
body fluids. Some of them are quite general, other are good for specific systems only. 
General equations employ the parameter of nonsphericity introduced by the SPT 
of convex bodies. The concept of describing the shape of particles by this parameter 
has been then extended also to FHS models but yet it seems worthwhile (and often 
necessary) to differentiate between the convex and nonconvex models. 

The SPT and its various implementations play a key role in theories of non­
spherical body fluids. It is the only theory available at present which defines rigorously 
the parameter of nonsphericity and although the resulting equations are not very 
accurate they provide a basis upon which better equations are built. The value of 
rigour is best esteemed by reminding the failure of empirically introduced parameters 
or and, when they are applied to cubes or infinitely thin platelets. 

The method which seems to yield the most accurate equations is the same as that 
for HS: to estimate all the virial coefficients which allows to sum up the entire virial 
expansion (e/. Eqs (4.42) and (4.45)). For accomplishing this scheme the coefficients 
must be parametrized, usually by means of the parameter ce, so that the resulting 
equation is at least formally general - see Eqs (4.117) and (4.118). This generality 
enables us to apply these equations to any CB model at low densities. 

There is now no doubt about insufficiency of one parameter to describe properties 
of higher-order clusters of nonspherical particles beyond the two-particle ones. At 
medium and high densities the application of Eqs (4.117) and (4.118) is therefore 
limited, in general, to small values of ce only. Although for linear models Eq. (4.117) 
remains accurate up to ce '" 1·5 and Eq. (4.118) seems good for oblate shapes, any 
general conclusion on performance of Eqs (4.117) and (4.118) for ce ~ 1·2 is hard 
to make. As an attempt to remedy this situation, two equations employing an addi­
tional parameter have been proposed, Eqs (4.119) and (4.120). However, presumably 
due to the purely empirical nature of their derivation, they do not do better than Eqs 
(4.117) and (4.118) and may hardly be recommended. 

Results based on Pade approximants are usually only fair and unpredictable. 
This is a consequence of the high sensitivity of PA to the values of the virial coeffi­
cients and, presumably, not necessarily "regular" behaviour of higher virial coeffi­
cients. On the other hand, the truncated virial expansion with the HS reference 
performs very well. The five term expansion yields results within experimental errors 
up to medium densities regardless of the model considered. At high densities it 
begins to underestimate the compressibility factor in accordance with the inequality 
B;f'yl-l - BHS.d..y~s 1 > 0 valid for all known coefficients of realistic models. 
The truncated perturbed virial expansion is believed to provide, in general, a lower 
bound for the compressibility factor. 

In Subsection 3.2.3. we mentioned a discrepancy between two existing sets of data 
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of the virial coefficients of oblate spherocylinders. At larger values of cp{ = y - 1) 
the fourth vi rial coefficients due to Wojcik and Gubbins33 seem too large and do 
not satisfy Eq. (3.65). The values due to Nezbeda34 seem too low and B4 for cp = 3 
also fails to satisfy Eq. (3.65). When either set of the data is used to calculate the 
approximant cp{rl) in Eq. (4.52), the resulting compressibility factor is not as good 
as that for other models. Since Eq. (4.52) is correct for CB this may only reflect 
uncertainty in the virial coefficients used. But there comes an additional problem 
when the high density simulation data are compared with the truncated perturbed 
virial expansion. At 'I = 0·45 and for cp = 1·5 and 2·0 the results look as follows: 

cp = 1'5 11·35 ± 0·12 versus 11·22 (11'23) 

cp = 2·0 12·30 ± 0·10 versus 12·16 (12'21) 
12·09 ± 0·16 

where the values in parantheses correspond to Nezbeda's set of the virial coefficients. 
Agreement between the simulated and calculated results is, at such a high density, 
astonishing: One would intuitively, and in accordance with the discussion in the 
preceding paragraph, expect the calculated values to fall well below the simulated ones. 
An explanation might be that the higher virial coefficients are negative and large 
in the absolute value but this seems very unlikely. Since there is no other reliable 
theoretical method at present available to test the simulation results we must con­
clude that either our contemporary understanding of HB behaviour is still unsatis­
factory or that the existing numerical data on the oblate spherocylinder fluid must 
be questionned. 

The perturbation and integral equation methods yield results which are uniformly 
inferior to those obtained from either Eq. (4.117) or (4.118). With the exception of the 
simplest methods, the EOS is not given in a closed analytic form and the main merit 
of these methods lies thus in their ability to describe the structure of fluids. 

Concerning the FHS models, the best method at present available for describing 
their P-V-T behaviour is that due to BoubHk and Nezbeda61 : the ISPT equation 
with appropriately defined parameter 0(. It' estimates properties of all so far con­
sidered models quite well but yet it should be used with caution. Although it is 
theoretically justified for ceratin models, its success stems largely from fortuituous 
cancellations. The method fails for models not much different from convex models 
(due to the failure of the ISPT equation to produce accurate results for CB) and 
deteriorates with increasing heterogeneousness. 

5. HARD BODY MIXTURES 

Phase diagram of fluid mixtures is much richer than that of pure fluids making thus 
mixtures very interesting and challenging, especially for theorists. Besides that, 
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practically all real fluid systems chemical engineers have to deal with are mixtures 
and proper understanding of their properties along with developing an accurate 
theory are of high importance. Despite these facts very little has been done for 
mixtures, especially concerning computer simulations. Existing computer data (not 
only for HE fluids) up to 1984 together with theoretical methods explaining them 
have been reviewed recently by Gubbins and coworkers229 who have also discussed 
general future needs. 

In this section we discuss together both the virial coefficients and compressibility 
factors. Practically all methods considered are simple extensions of those discussed 
in Chapters 3 and 4 for pure fluids. However, not all pure fluid theories could be or 
have been extended. For instance, from all specific methods devised for discontinuous 
potentials (Subsection 4.4.2.) only the SPT and Andrew's methods have been ex­
tended. Further, we do not consider lattice theories for their negligible role in HE 
fluid mixtures, resummation techniques because of the lack of data on virial cofficients, 
and integral and integro-differential equations with the exception of the P-Y theory. 

5.1. Basic Relations 

Basic expressions and relations given in the previous Chapter for pure fluids can be 
readily extended to mixtures. For simplicity we shall confine our considerations to 
binary mixtures only, extension to an arbitrary m-component mixture is straight­
forward. 

Let No denote the number of molecules of species IX, rt. = 1, 2. Number density 
and concentrations, respectively, are then (2, = Na/Vand Xa = Na/N, N = Nt + N 2 • 

Throughout this chapter we shall use the packing fraction 1J = r.1Ja for the dimension­
Ie,s density of a mixture, 1Ja = (2/f/a' The pair potential function U depends now also 
on the assignement of species to space variables, u(l, 2) ~ u(la' 2p) == uaP(l, 2), 
and hence also all functions related to u. Consequently, the total potential energy is 
no longer invariant under permutations of all the molecules but only under permuta­
tions involving molecules of the same species. The configuration partition function, 
QN 1N Z' of a binary mixture is thus given by 

(5.1) 

where ZN is the configuration integral given formally by the same expression as that 
of pure fluids, cf. Eq. (3.3). From Eq. (5.1) and a similar extension of Eq. (3.4) we 
can get all required expressions for the mixture. 

In Chapters 3 and 4 dealing with pure fluids we have always assumed that the 
characteristic measure of the size of hard bodies is unity. In this chapter this conven-
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tion must be dropped so that the characteristics (diameters, etc.) will explicitly appear 
in expressions. 

In the case of hard body interactions the cross interaction, U12' is usually defined 
on the geometrical basis, it means U 12 = 00 when the two particles overlap and 
u 12 = 0 otherwise. However, it is also possible to define the so-called non-additive 
interaction. For instance, for a HS mixture the cross diameter of a pair of unlike 
spheres of diameters (7a may be defined in general by 

(5.2) 

where b can be both positive and negative or zero. For b = 0 we have a pair of real 
hard spheres (additive HS) whereas for b #= 0 we have a non-additive HS mixture. 
Nonadditivity can be evidently extended also to nonspherical bodies but such an 
extension has not been considered so far. 

The virial expansion for the mixture has the same form as (3.1), 

PP/e = 1 + Be + Ce2 + '" , (5.3) 

where now 

B = 'f.xaxpBaP (5.4) 

C = 'f.xaXpXyCaPy 

Bap denotes the 2nd virial coefficient with bond jaP = exp [ - pUaP] - 1, etc. To 
simplify notation we have used in (5.3) capital letters for the virial coefficients in place 
of B with an additional subscript, 

(5.5) 

With the exception of the additional summation over species, i.e. pairs 1-1, 
1 - 2, and 2 - 2, the virial form of equation of state of a mixture is given formally by 
the same expressions as the EOS of the pure fluid. For instance, for a mixture of 
CB it holds14.23o (cf. Eqs (4.8) and (4.12): 

PP/e = 1 + ie L xaxflg:~ap «r12 . vap»c f/a+11 (5.6) 
... 11 

= 1 + ie 2: xaxp[,§:;;.c(3'f"a + 2f/afJtp + fJt"f/p) + 
... P 

+ '§P;.c(3'f"p + 2f/pqta + qtpf/a)] (5.7) 

and similarly for FHS models. 
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The Ornstein-Zernike relation for a mixture reads as 

from which the mixture counterparts of the compressibility EOS, Eqs (4.24) and 
(4.26), are simply derived. 

There is one exact analytic result if we consider the extreme case where bodies of 
one species, let us say 1, shrink to the point body. All the volume unoccupied by the 
bodies of species 2 is then available to the point particles and we get 

(5.9) 

where '72 is the fraction of the volume occupied by bodies 2 and the compressibility 
factor (f3P/llh is evaluated at density (h-

In addition to common functions encountred in theories of pure fluids there are 
functions relevant only to mixtures. For example, when dealing with mixtures at 
low pressures then excess thermodynamic functions, defined as the difference be­
tween the thermodynamic function of mixing and the value corresponding to an 
ideal mixture at the same temperature, pressure, and composition, are of interest 
rather then the thermodynamic functions themselves. For hard body fluids the 
excess functions are simply attainable from EOS using the standard thermodynamic 
relations231 • Further, since there is no energy change on mixing, the excess Gibbs 
free energy of mixing, GE, can be calculated from 

(5.10) 

where VE is the excess volume of mixing. At zero pressure it holds: 

(5.11) 

Quantity GE is useful for studying phase transitions. For example, the inequality 

(5.12) 

is a sufficient condition for complete miscibility. 
Other functions relevant to mixtures are the partial molar quantities .4" defined for 

any extensive property A by231 

A = -- (OA) 
" oN" Np,P,T' 

(5,13) 
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Functions A" cannot be simultaneously changed arbitrarily but are subject to a con­
straint (at constant T and P) 

(5.14) 

called the Gibbs-Duhem equation. In the special case of taking the Gibbs energy, 
G, for A we get 

(5.15) 

and, consequently, 

LQ~(aJl"laQph.p.p. = O. (5.16) 
" 

This relation must be satisfied by any correct EOS of mixtures. 

5.2. Virial Expansion 

5.2.1. Exact Results 

For HB mixtures the situation is a bit worse than for pure fluids. For a mixture of 
additive HS the exact analytical results are known for Band C and for most diagrams 
contributing to D. For one specific model of nonadditive HS with positive departure 
from additivity quite a large number of coefficients have been calculated both analyt­
ically and numerically. 

For nonspherical HB mixtures only the second virial coefficient is known for 
convex bodies. In all other cases the virial coefficients are determined numerically 
but only few such computations have been actually performed. 

Hard sphere mixtures. For a mixture of additive HS the cross diameter a12 is 
given by Eq. (5.2) with <5 = 0 and it thus holds 

(5.17) 

For the third virial coefficient Kihara47 derived the result 

C"py = (41t/3)2 {(R;R: + R;R~ + R:R~)/3 + 3R;R~R; + 
+ R;(R~Ry + RpR;) + R~(R;Ry + R"R;) + R~(R;Rp + R"R~)} , (5.18) 

where R" = a,,/2, etc. 

The fourth virial coefficient is given by terms D4, D5, D6 and these are given by 
subterms which differ in assignment of spheres in the diagrams. Rigby and Smith232, 

following the former study of McLelan and Alder233 (and references quoted there), 
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calculated the fourth virial coefficients in the mixtures of HS of the diameter ratios 
0'6 : i and 1/3 : 1. With the exception of the three most complicated clusters they 
succeeded in expressing analytically all the others. The values of the three remaining 
clusters the authors evaluated numerically. Their final results are listed in Table XXII. 

Calculations of the virial coefficients have been also performed234 for a nonaddi­
tive HS mixture defined by the potential 

Ull = U 22 = 0 

U 12 = 00 for r12 < (f 

o for r12 > (f • (5.19) 

In this case the only nonvanishing graphs are the so-called bicoloured graphs, i.e. 
the graphs where there are no bonds between pairs of the same species (for details 
see refs23s.236). The virial expansion can be then cast into the form 

PP/(! = 1 + I (i + j - 1) X;X~'1i+j-1Cij' 
i .j 

(5.20) 

where '1 = t1t(!(f3 and Cij are coefficients corresponding to all irreducible graphs 
with i molecules of species 1 and j molecules of species 2; they are listed in Table 
XXIII. 

Convex body mixtures. The second cross virial coefficient follows immediately 
from the basic relations of the CB geometry, (1. Eq. (2.14). It holds: 

TABLE XXII 

B12 = !(1"J + "r 2 + 91 19'2 + 9129'1) = 

= -t(l + 31X1) 1"" 1 + !(i + 31X2) 1"2 + flB, (5.21) 

Fourth vi rial coefficients of mixtures of hard spheres taken from ref. 232. The viTial coefficients 
are reduced by O'r2 and their accuracy is about 0'01 per cent 

D"'/Jr& 0'1/0'2 = 0'6 0't/0'2 = 0'3333 

D11ll 0'19789 0'00515 

D1112 0'66367 0'07938 

D1122 2'0900 1-0464 

D1222 6'7957 12'275 

D2222 19'637 101'32 
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where 

dB = lal (;: - 1)~1 + laz (;: - 1) ~z = 

= la1 (:: - 1) ~ 1 + laz (:: - 1) ~ z . 

Boublik, Nezbeda: 

(5.22) 

It is thus seen that the parameters of nonsphericity of individual components, so 
useful in describing properties of pure fluids, lose this ability for mixtures: with the 
exception of one specific case where either Y 1 = Y 2 or 8<l1 = fYt z it is not possible 
to express even BI2 by means of a j only. 

The third vi rial coefficient is given47 by a similar extension of Eq. (3.30): 

where 

Cally = -! [~a~1l + ~a~y + ~Il"f"y + "J/'i8<lpYy + fYtyf/ll) + 

+ "f"p{8<lyY a + 8<laYJ + "f"y(8<laY p + 8<lpYa} + (1/41t) Gaily]' (5.23) 

(5.24) 

This inequality forms a basis for the formulation of approximate expressions anal­
ogous to Eqs (3.58) and (3.59) for the third and fourth virial coefficients. Values 
determined in this way represent the only source of Cally and Dally6 since no computer 
data have been published so far. 

Fused hard body mixtures. In this case an exact general expression is unknown 
even for Ba.Il. In the special case of mixtures of homonuclear dumbeIIs of the same 

TABLE XXIII 

Coefficients C ij (CIj = Cjl) of the virial expansion of the mixture of nonadditive hard spheres 
defined by Eqs (5.19) and (5.20) (ref.z34) 

i 102C jj 

1 -100·0 
1 2 0 
2 2 8·095 
2 3 \·220 
3 3 -0·8824 
2 4 0·1646 
2 5 0·01985 
3 4 -0·3687 
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site-site separation and differing only in diameters, the earlier mentioned expres­
sions due to Ishihara or Wertheim (see Subsection 3.2.4.) can be used with (I = 
= ((II + (12)/2. 

On the other hand, for two mixtures of HOMO DB Aviram and Tildesley237 

calculated B12 from the simulation results of PP/e and for several mixtures of 
HOMO DB all the coefficients B ll , CaPy' and DaPyr, were evaluated numerically by 
Wojcik and Gubbins238 • These data are listed in Tables XXIV and XXV. 

5.2.2. Approximate Results 

The third virial coefficient of a CB mixture can be calculated from (5.23) provided 
that the factor G is known. Boublik65 has proposed to use for G an approximation 
(ef. Eq. (3.57)) 

(5.25) 

This approximation yields CaPy which is identical to the result produced by the 
ISPT equation of state of mixtures (see Eq. (5.76)). 

In the absence of any detailed information on the 4th vi rial coefficient, Boublik65 

has proposed also an expression for D by analogy with Band C: 

Dapyo = H 'f'"IZ 1'" fI 'i"y + 1'" a 1'" fl1'" 0 + 1'"a 1'"y 1'"r, + 1'" p'f'" y 1'" r, + 
+ 194 ['f'"a'f'"p(.gfy9'r, + 9'y~o) + 'f'"a1'"y(~p9'o + 9'p~r,) + 

+ 1'"a'f'"r,(~p9'y + 9'fI£Jly) + 1'"p1'"y(~a9'o + 9'a£Jlo) + 
+ 1'"p'f'"o(~a9'y + 9'a~y) + 1'"y'f'"r,(~a9'p + 9'a~P)] + 
+ (1/121t)('f'"aGpyr, + 1'"flGayo + 1'"yGa(lr, + 'f'"r,Gapy)} . (5.26) 

The factor 14/9 in this relationship has been introduced quite empirically in order 
to retain the approximate value of B4 = 18·0 in the case of pure HS. Introduction of this 
factor reflects oversimplifications used in the derivation of (5.26) where, for example, 
only those combinations of the geometric quantities of the order (!)( 'f'"3) are considered 
which already appeared in the relationships for the lower-order coefficients. 

Due to the lack of exact data on C and D of CB models, nothing can be said about 
accuracy of Eqs (5.23), (5.25), and (5.26) in addition to the quality of their predic­
tions in the case of one-component fluids. 

The situation is much better for FHS mixtures since for a number of these mixtures 
values of Cafly and Da(lrr" in addition to Bap , are available. 

To determine BLl of a mixture of HOMO DB Boublik59 has followed the same 
route as for pure fluids and proposed an expression (ei. Eqs (3.48)-(3.50)) 

(5.27) 
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where for the volume difference L\V12 it holds 

(5.28) 

and 

(5.29) 

Comparison of the cross virial coefficients given by Eq. (5.27) with the numerical 
data of Wojcik and Gubbins is shown in Table XXVI. It can be seen that Eqs 
(5.27)-(5.29) yield very accurate results with errors not exceeding the double error 
of the numerical data. Further, it is seen that the approximation L\V12 = 0 practically 
does not bring about additional errors and it is therefore possible to use Eqs (5.23) 
and (5.26) also for HOMO DB mixtures. 

In Table XXVII we compare the third and fourth vi rial coefficients of two types 
of mixtures: one is that of HS and the other is made up of HS and HOMO DB. 
In the case of HS mixtures Eq. (5.23) is exact and for the mixtures of HS + HOMO 
DB it seems also quite accurate: the maximum difference is about 1·7 per cent in 
comparison with the error estimate of 0·5 per cent. Surprisingly good results are also 
obtained for D. For HS mixtures the maximum deviation is about 2 per cent and 
only slightly worse accuracy is achieved for a realistic mixture of HS and HOMO 
DB of L * = 0·6. In the extreme case of the mixture containing HOMO DB of L * = 
= 1·0 the accuracy evidently deteriorates but yet it remains quite good with the 
exception of the Dilil term. This is a consequence of the fact that Eq. (5.26) COIl-

TABLE XXIV 

Second cross virial coefficients of mixtures of homonuc\ear diatomics (L* = L/u) 

L!/L~ Conditions . B 12 /u12 Ref. 

0'6/0'3 u l = u2 3-616 ± 0'003 238 
-;'"1 = "1"'2 3'603 ± 0'003 238 
-;'"1 = (Ut/U2)2 -;'"2 3'573 ± 0'002 238 

1'0/0'6 u 1 = u2 4'897 ± 0'003 238 
-;'"1 = "1"'2 4'890 ± 0'007 238 
-;'"1 = .]f2 4'856 ± 0'006 238 

0'2/0'4 ul = u2 3·08 ± 0'15 237 

0'2/0'6 ul = u2 3'32±0'16 237 

Collection Czechoslovak Chem. Commun. IVol. 51) [1986) 
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TABLE XXV 

Third and fourth virial coefficients of mixtures of homonuclear diatomics taken from ref.238• 

The virial coefficients are reduced by appropriate powers of 0"12; Lr = LJO"j 

LTlL~ 

0'6/0'0 0'6/0'0 0'6/0'0 0'6/0'3 
Component 0"1 = 0"2 1'"1 = "1/2 1'"1 = 1"1/2 0"1 = 0"2 

C ll1 10·64 ± 0·05 5·77 ± 0'03 3-65 ± 0'02 10'64 ± 0'05 
C I12 6'82 ± 0'03 5·43 ± 0'03 4'54 ± 0'02 8'78 ± 0'04 
C I22 4'34 ± 0·02 5·08 ± 0'03 5'57 ± 0'03 7·22 ± 0·04 
C 222 2'74 ± 0'01 4'78 ± 0'02 6·79 ± 0'03 5'93 ± 0'03 

L!lL! 

1'0/0'0 1'0/0'0 1'0/0'0 1'0/0'6 
0"1 = 0"2 1'"1 = "1'"2 "1/1 = 1"1/2 0'1 = (12 

C ll1 18'68 ± 0·09 8'98 ± 0·04 5-64 ± 0'03 18'68 ± 0·09 
C 1I2 9'88 ± 0'05 7'50 ± 0'04 6'24 ± 0'03 15'47 ± 0'08 
("'122 5'22 ± 0'03 6'29 ± 0·03 6'85 ± 0'03 12-85 ± 0'06 
C 222 2·74 ± 0'01 5'27 ± 0'02 7'44 ± 0·04 10'64 ± 0'05 

.~--------

L!lL~ 

0'6/0'0 0'6/0'0 0'6/0'0 0'6/0'3 
0"1 = 0"2 1'"1 = "1'"2 "1'"1 = 1"1'"2 0"1 = 0"2 

DIIII 18'98 ± 0'19 7'58 ± 0'08 3-81 ± 0'04 18'98 ± 0·19 

DII12 11'59 ± 0'12 7·18 ± 0'07 4'94 ± 0'05 15-48 ± 0'15 

DI122 7·12 ± 0·07 6'79 ± 0'07 6·35 ± 0·06 12'54 ± 0'13 
DI222 4'34 ± 0'04 6·41 ± 0'06 8·12 ± 0·08 10'17 ± 0·10 
/)2222 2-64 ± 0'03 6·06 ± 0·06 10'29 ± 0'10 8'31 ± 0'08 

LVL! 

1'0/0'0 1'0/0'0 1'0/0'0 1'0/0'6 
0"1 = 0"2 1'"1 = "1/2 "1'"1 = 1"1'"2 0"1 = 0"2 

D11ll 40·03 ± 0·40 13'33 ± 0'13 6'63 ± 0'07 40'03 ± 0'40 
Dl112 20·16 ± 0'20 11'33 ± 0·11 7-80 ± 0'08 33'17 ± 0'33 
D1122 10·21 ± 0'10 9'68 ± 0·10 9'07 ± 0'09 27'53 ± 0'28 
DI222 5·14 ± 0'05 8·29 ± 0'08 10'32 ± 0'10 22-98 ± 0'23 
D2222 2'64 ± 0'03 7'02 ± 0'07 11'79 ± 0·12 18'98 ± 0·19 

Collection Czechoslovak Chem. Commun. [Vol. 51) [1986) 
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siderably underestimates B4 of pure nonspherical components. This is presumably 
due to the approximation ~V12 = 0 and better results may be therefore anticipated 
for CB mixtures. 

5.3. Simulation Results for the Compressibility Factor 

5.3.1. Hard Sphere Mixtures 

Additive HS. There are several sets of data covering the range of diameter ratios 
(11/(1Z from 0·3333 up to 0·9091. Besides the most frequently simulated equimolar 
mixtures, concentration ends have been studied as well. The data are listed in Table 
XXVIII. Unlike other systems, for some sets of data we have not been able to specify 
estimates of the simulation uncertainties. The list of data contains also the results 
due to Smith and LeaZ39 which were obtained with very small samples only - III 

most cases with 32 particles. 

Non-additive HS. There are two sets of data: one for (j > 0 due to Melnyk and 
Sawfordz40 and one for (j < 0 due to Adams and McDonaldz41 • 

For (j > 0 the system is expected to exhibit a fluid-fluid transition: jf the density 
increases the components should separate in order to minimize the volume (and 
thus G) excluded by hard spheres. In a special case of (11 = (1z = 0, (j :1= 0, (cf. 
Eq. (5.18)) the model is isomorphic to the Widom-Rowlinsonz4z model of pene-

TABLE XXVI 

Comparison of the second cross virial coefficients of mixtures of homonuclear diatomics (L*= 
= L/a) given by Eq. (5.27) with exact data 

B12/a~Z 
Li./L * Conditions Eq. (5.27) Eq. (5.27) exact 

with Av1z = 0 

0'6/0'3 a 1 = a 2 3'615 3'618 3'616 
1/"1 = 'i'"2 3'600 3'603 3'603 
'i'"1 = (al/azl 'i'"z 3'568 3'571 3'573 

1'0/0'6 al = a2 4'890 4'920 4'897 
'i'"1 = 'i'"z 4'883 4'914 4'890 
'i'"1 = t'i'"z 4'848 4'885 4'856 

0,2/0'4 a 1 = a2 3'09 3'09 3'07 

0'2/0'6 a 1 = a2 HI 3·42 3'32 

Collection Czechoslovak Chem. Commun. [Vol. 51) [-ql86j 
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trable spheres. Melnyk and Sawford considered the case 0'1 = 0'2 = 0' and ~ = 0·2. 
They simulated equimolar mixtures within the range of the packing fraction 
Y/ E (0'15,0'35) and diluted mixtures with concentrations up to 0·1 at ~ = 0·3. For 
the equimolar mixture they deduced an estimate of the critical point associated 
with demixing to be 

TABLE XXVII 

Y/c = 0·22 ± 0·02 

(PP/(])c = 0·85 ± 0·10. (5.30) 

Comparison of the approximate and exact results of the 3rd and 4th virial coefficients of hard 
sphere and homonuc1ear diatomic mixtures. L( = L;/ui and uHS = udialomlc' The virial 
coefficients are reduced by the appropriate power of U I Z 

Component 

DIIII 

DII12 

DI122 

DU22 
Dzz22 

Component 

C IIl 

CII2 

C IZZ 

C22Z 

Dllil 

D IIIZ 

DI12Z 

D1222 

Dz22z 

utfuz = 0'60 

Eq. (5.26) exact 

0'1940 0'19789 
0'6619 0'66367 
2-163 2'0900 
6'691 6'7957 

19·25 19'637 

L!lL! : 0'6/0'0 

Eq. (5.23) exact 

10'57 10'64 
6'80 6'82 
4'33 4'34 
2'74 2-74 

Eq. (5.26) exact 

17'59 18'98 
10'98 11'59 
6·81 7·12 
4'21 4'34 
2'58 2·64 

Collection Czechoslovak Chern. Cornrnun. [Vol. 511 [19861 

utfuz = 0'333 

Eq. (5.26) exact 

0'00505 0'00515 
0'0819 0'07938 
1-161 1'0464 

13'08 12'275 
99'33 101'32 

LT!L!: 1'0/0'0 

Eq. (5.23) exact 

18'37 18'68 
9'78 9'88 
5·19 5'22 
2'74 2'74 

Eq. (5.26) exact 

33'01 40'03 
17'55 20·16 
9'29 10'21 
4'91 5·14 
2'58 2'64 
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TABLE XXVIII 

Compressibility factors of mixtures of additive hard spheres 

udu2 XI " PP/(J 

0'9091 a 0'5 0·1168 1-63. 
0·1296 1·71 
0·1620 2'02 
0·1969 2·37 
0·2334 2'83 
0·2544 3·13 
0·2716 3·41 
0·3107 4·19 
0'3503 5·23 

0'3902 6·45 
0'3928 6'57 
0·4073 7·06 
0·4212 7·75 
0'4301 8'36 
0·4344 8·51 
0'4470 8'99 
0·4589 9·83 

0'90b 0'5 0·49 12·3 
0'75 0'47 10'6 

0'60c 0·125 0·2618 3·09 
0'25 0'2618 3'02 

0·3665 4·95 

0'5 0'1571 1·85 
0'2094 2'30 
0·2618 2·97 

2'96 
2·92 
3'01 

0'3142 4'02 
4·16 

0'3665 5'22 
4'93 
5'02 
5·15 

0'3864 5'86 
0·4189 7·11 
0·4451 8·19 

0'75 0'2618 3·13 
0'3665 5·43 

Collection Czechoslovak Chern. Commun. [Vol. 51) [~986) 
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At 11 = 0·3 they obtained 

x~ = 0·029 ± 0·006. x~ = x~ 

PP/f2 = 4·22 ± 0·05 

2403 

(5.31) 

for the concentration and compressibility factor, respectively, at the coexistence 
curve. The results are shown in Table XXIX. 

For (j < 0 no phase transition exists and equimolar mixtures with 0'1 = 0'2 = 0' 

and -(j = 0'1,0'2,0'3,0'4, and 0'5 were simulated. The results are shown in Table 
XXX. 

TABLE XXVIII 

(Continued) 

0'5" 0'80078 

0'89844 

0'95 

0'33 0'50 

0'938 

0'98 

0'30 0'5 

" 
0'45 
0'50 
0'55 

0'45 
0'50 
0'55 
0'59 

0'45 
0'50 
0'55 

0'233 
0'269 
0'311 
0'358 
0'381 
0'439 
0'507 

0'45 
0'50 
0'55 
0'45 

0'49 

PP/q 

7'55 
10·1 
14'3 

7-82 
10'7 
14'8 
22'5e 

8'17 
11'5 
16'4 

2'37 ± 0'02' 
2'78 ± 0'03' 
3'36 ± 0'03' 
4'24 ± 0'04' 
4'76 ± 0'05' 
6'57 ± 0'07' 
9'77 ± 0'101 

6'27" 
8'47" 

11'3" 
8'42" 

8'81" 

II Taken from ref. 247 . The compressibility factors have been calculated from the data on g~JI 
at contact; no error specification of the original data was given. " Taken from ref.248• No error 
estimate specified. C Taken from ref.239• Most of date were obtained with 32 particles only. 
"Taken from ref.249. Accuracy of the data is about 3 per cent. e Metastable fluid range.' Taken 
from ref. 246. 

lollection Czechoslovak Chern. Commun. [Vol. 51) (1986) 
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TABLE XXIX 

Compressibility factors of mixtures of nonadditive hard spheres with at = tT2 and ~ = 0·2 
(ref. 240) 

Concentration 11 PP/(l 

0·15 2'36 ± 0'01 
0'20 3'12 ± 0'02 
0'22 N7± 0'02 
0'25 3'90 ± 0'03 
0'30 5'01 ± 0'04 
0'35 6·70 ± 0'07 

Density Xl PP/(l 

11 = 0'30 0'0234 4'20 ± 0'02 
0'0352 4'25 ± 0'02 
0'0469 4'32 ± 0'03 
0'0625 4·44 ± 0'02 
0·1016 4'69 ± 0'03 

TABLE XXX 

Compressibility factors of equimolar mixtures of nonadditive hard spheres with a 1 = tT2 (ref. 241). 

The compressibility factors are accurate to within 5 per cent 

11 

0·1047 
0·1571 
0'2094 
0'3142 
0'4189 
0'5236 
0'6283 
0'7330 
0'8376 

0'1 

1-46 
1-80 
2·17 
3'39 
5'22 
8'63 

12'23 

0'2 

3'95 
5-60 
8·07 

-~ 

0'3 

1· 31 

1'80 
2·43 
3·12 
4'25 
5·73 
7-89 

0·4 

3-69 
4'99 
6'53 

0'5 

1'26 

1-61 
2'06 
2'65 
3·40 
4'61 
5'92 
8·10 

Collection Czechoslovak Chem. Commun. [Voll 511 (1986) 
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5.3.2. Other Mixtures 

The list of simulated mixtures, especially of those with both nonspherical components, 
is quite scanty. 

Concerning the CB fluids, mixtures of spheres and prolate spherocylinders were 
studied by Boublik and Nezbeda230.243 and Monson and Rigby244. The former 
authors considered both equimolar and non-equimolar mixtures with components 
of the same diameter. The latter authors considered two equimolar mixtures, one 
with components of the same volume and the other with the same diameters. The 
results are listed in Table XXXI. 

For the FHS models there are four sets of data. Aviram and Tildesley237 and Woj­
cik and Gubbins238 studied mixtures of homonuclear diatomics and of these with 
spheres. In order to extend the list of data by other, qualitatively different models, 
Nezbeda and coworkers121.24S simulated quite recently binary mixtures (both equi-

TABLEXXXI 

Compressibility factors of mixtures of hard spheres (1) and prolate spherocylinders (2) of i' = 2 

PP/(J 
Conditions 

" xl = 0·20 xl = 0·50 xl = 0·7143 

aHS = apsc 0·20 2·50 ± 0·06" 
0·2979 4·03 ± 0·07c 

0·30 4·10 ± 0·05" 
0·3128 4·52 ± 0·08b 

0·3277 5-17 ± O·lOc 

0·3965 7·02 ± 0·12c 

0·40 7·31 ± 0·07" 
0·4163 8·07 ± 0·15b 

0·4361 9·89 ± 0·20c 

0·45 9·87 ± 0·10" 
0·4530 9·70 ± 0·21c 

0·4757 11·59 ± 0·23b 

0·4983 14·34 ± 0·40c 

-r HS = 1"" psc 0·20 2·52 ± 0·04" 
0·30 4·20 ± 0·05" 
0·40 7·39 ± 0·06" 
0·45 10·22 ± 0·10" 

Collection Czechoslovak Chem. Commun. [Vol. 51) [1986] 
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molar and non-equimolar) composed of spheres, heteronuclear diatomics, and linear 
symmetric triatomics. All these data are listed in Tables XXXII - XXXVI. 

The main conclusions of all the simulations (for additive mixtures) may be sum­
marized as follows: 

(i) The excess volume is very small and usually within uncertainties of simulations, 
VE ~ O. 

(ii) The effect of molecular shape on the compressibility factor of the mixture is 
quite strong. This often leads to a large difference between the mixture compressibility 
factor and that of the HS mixture whose components have the same volume as 
those of the molecular fluid mixture. 

(iii) The effects of mixing are, at least for the properties considered, not very pro­
nounced. This is reflected in the fact that the pair correlation functions of the mix­
tures differ only slightly from those in the corresponding pure fluids at the same 
overall density. 

TABLEXXXn 

Compressibility factors of mixtures of homonuc1ear diatomics with 0'1 = 0'2 (L* = L/O') 

PP/(l 
Conditions 

xl = 0·25 xl = 0'50 xl = 0'75 

L! = 0'6; L2 = 0'0" 0'30 4'20 
0'45 9'78 10'15 10·76 

0'30 4'88 
0·35 5-95 7-26 
0·43 9'74 11'06 12"31 

0'0750 1-41 
0·1500 2'02 
0·2249 2'94 
0'2999 4'58 
0·?749 7'54 
0'4499 12'78 

0'0808 1-47 
0'1617 2-22 
0'2425 3'39 
0'3234 5'50 
0·4042 9'34 

.. Ref.238. Error in PP/(l is about 3 per cent. b Ref.237. Error in PP/(l is about 3'5 per cent. 

Collection Czechoslovak Chem. Commun. [Vo~ 51] [1986] 
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5.4. Theories of Mixtures of Hard Spheres 

5.4.1. Additive Hard Spheres 

Scaled particle theory. Derivation of the SPT equation of state for mixtures fol­
lows the same route as that for pure fiuids 155 . 

Let Ra be the radius of spheres oc and R t the radius of a test particle which is gra­
dually coupled into the system considered. Then the interaction potential uatCr) of 
a pair oc-t equals zero for r > Ra + R t and infinity otherwise. If R t = 0 we have 
a point-wise particle and the total decoupling is reached for R t = - Rm where 
Rm is the radius of the largest HS. For R t < 0 the excluded volume VI+<> is smaller 
than volume "f/' a of a given particle. This fact makes it possible to write an exact 
expression for '§ at r = R t + Ra (for definition of '§ and other details see Section 
4.1. and Subsection 4.4.2.): 

(5.32) 

TABLE XXXIII 

Compressibility factors of mixtures of homonuclear diatomics (ref. 238). Error in PP/(! is about 
4 per cent; L* = L/u 

PP/(! 
Conditions Length of dumbells ------------------

Y, " - r 2 Lf = 0'6, L2 = 0'0 0'30 
0·45 

L!= )'0, L2 = 0'0 0'30 
0·43 

Lt = 0'6, Li = 0-3 0'30 
0'45 

Lt = )'0, Li = 0·6 0·45 

r I ~ 11"2 Lt = 0'6, L2 = 0·0 0'30 
0-45 

Lj= )'0, L2 = 0'0 0'30 
0'43 

Lj= )'0, L~ = 0·6 0·45 

1-1 C_, (utiu2)2 r 2 Lj' = 0-6, Li = 0'3 0'30 
0·45 

Collection Czechoslovak Chern. Commun. [Vol. 51) [1986) 

Xl = 0'25 Xl = 0'50 

9'76 

)2')4 

9'63 

11'86 

4-25 
10'27 

4-83 
10'71 

4'30 
10-52 

13·27 

4'19 
10-06 

4-63 
10'24 

)2'92 

4-27 
10,25 

10'29 

Xl = 0'75 

10'82 

)4'37 

)0'60 

13-94 
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TABLEXXXIV 

Compressibility factors of mixtures of hard spheres (1) and heteronucelar dumbells (2). Lltr A = 
= 0'625, trB/u A = 0'5. Values for the equimolar mixtures are taken from ref. Ill, for the non­
equimolar mixtures from ref. 245. The compressibility factors are accurate to within 4 per cent 

/lPIQ 
Conditions " Xl = 0'25 Xl = 0'50 Xl = 0'75 

UHS=UA 0'25 NO 3-26 3'19 
0'30 4'45 4'26 4·17 
0'35 5-88 5'66 5'50 
0'40 7'96 7·73 7-35 

0'25 3'21 2-94 2'77 
0'30 4·22 3'84 3'58 
0'35 4'61 5'04 4'64 
0·40 7'61 6'63 6'09 

-r HS = -r DB 0'25 3-n 3-26 3-21 
0-30 4-48 4'33 4-14 
0-35 5-88 5-57 5'46 
0·40 7-91 7-54 7-30 

TABLE XXXV 
Compressibility factors of mixtures of hard spheres (1) and linear symmetric triatomics (2)_ 
Llue = 1'6, U A/uc = 1·0. Values for the equimolar mixtures are taken from ref.121 , for the non­
equimolar mixtures from ref.245 _ The compressibility factors are accurate to within 4 per cent 

/lPIQ 

Conditions " XI = 0'25 XI = 0'50 XI = 0,75 

0'25 4·11 3'69 3-36 

0'30 5'56 4'50 
0'35 7-68 6-68 5'98 
0'40 10·44 8'01 

0·25 4-03 3'35 
0'30 5-46 4·40 

0'35 7'52 5-92 

0'40 10'36 7-95 

Collection Czechoslovak Chern_ Commun_ )Vol.61) 11986] 
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Another exact relation holds for Rt -+ 00, i.e. when the surface of the test particle 
is planar and the stress is purely kinetic: 

lim I:.eal§(Rt + Ra) = PP = I:.PPa . (5.33) 
R~-+co 

Similarly to pure fluids, for R t ~ 0 the function l§ can be estimated by a polynomial 
whose coefficients are determined from (5.33) and from the known values of l§ and 
its first derivative at R t = 0: 

l§(Ra) = 1/(1 - '1) 

l§'(Ra) = 4nI:.R:ep/(1 - '1Y. 
(5.34) 

(5.35 

The contact value of the radial distribution function gap. required for determining 
EOS, equals l§(Rt + Ra) in the case of Rt = Rp. It holds: 

gaP((1ap) = l§(Rp + Ra) == l§pa = 

1 6C2 RaR(J 12C~ (RaR(J)2 
1 - '1 + (1 - '1)2 Ra + R(J + (1 - '1)3 Ra + R~ (5.36) 

where quantities Ci are defined by 

(5.37) 

TABLE XXXVI 

Compressibility factors of an equimolar mixture (ref. 121) of heteronuc1ear dumbells (UB/U A = 0'5, 
L/uA = 0'625) and linear symmetric triatomics (L/uc = 1'6. uA/uC = 1'0) with uA,dumbell = 
= UC,trlatomlc' The compressibility factors are accurate to within 4 per cent 

0'25 
0'30 
0'35 
0·40 

Collection Czechoslovak Chem. Commun. (Vol. 511 (1986) 
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The EOS corresponding to Eq. (5.36) is 

(5.38) 

which is, similarly to the case of pure hard spheres, identical to the c-form of the 
P-Y EOS (see below). 

For pure hard spheres Eq. (5.38) works only fair and it is not therefore possible to 
assume this equation to do better for mixtures. A modification of Eq. (5.38) has 
been proposed independently by Boublik193 and Mansoori and coworkers250 with 
the same final results. Following the same way as that leading from the SPT equa­
tion (4.61) to the C-S equation (4.44) (c/. derivation of Eq. (4.105), it is easy to 
obtain for a mixture the equation (BMCSL equation) 

(5.39) 

which reduces to the C-S equation for pure fluids. 

The same trick as that used for the above extension of the C-S equation to mix­
tures can be also applied to Eq. (4.46). Because of the additional term over the 
C-S equation, Boublik251 made further use of the fact that for" = 0·5 Eqs (4.44) 
and (4.46) coincide and obtained 

(5.40) 

In Table XXXVII the results given by Eqs (5.39) and (5.40) are compared with 
simulation data. It is seen that the BMCSL equation performs very well ,throughout 
the entire density range. Eq. (5.40) yields practically identical results. It should be 
reminded that in the limiting case when the ratio of diameters of components tends 
to zero, both the above discussed equations give the exact result, see Eq. (5.9). 
In fact, this is a common feature of all equations based on the SPT-form of the 
correlation function "S. It can be also simply proved that Eqs (5.38) through (5.40) 
satisfy Eq. (5.16). 

Percus-Yevick theory. Starting from the O-Z relation for mixtures, Eq. (5.8), 
and coupling it with the P-Y closure, 

(5.41) 

Collection Czechoslovek Chem. Commun. [VOI,S1) [1986) 
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a set of integral equations results. Lebowitz252 followed Wertheim's method used for 
the pure fluid and obtained the following analytic result for the direct correlation 
function of a mixture: 

-C12(r) = a1 for r < 2 = (0"2 - 0"1)/2, 0"2 > 0"1 

= a1 + ! [b(r - 2)2 + 4Ad(r - 2)3 + d(r - 2)4] 
r 

(5.42) 

where b, d, aOt , and ba are density-dependent parameters (see the original literature 
or ref. 25 for details). EOS follows immediately once the direct correlation function 

TABLE XXXVII 

Compressibility factors of equimolar mixtures of additive hard spheres evaluated from approxi-
mate theories 

PP/(! 
(11/(12 " Eq. (5.39) Eq. (5.40) Eq. (5.47) L-H-Ba vdWb exact 

0·9091 0·1296 1·73 1·73 1·73 1·73 1·73 1·71 
0·2334 2-82 2·83 2·80 2·81 2·82 2·83 
0·3107 4·19 4·20 4·15 4·17 4·19 4·19 
0·4073 7·20 7·22 7·15 7·13 7·19 7·06 
0·4589 9·88 9·90 9·91 9·75 9·85 9·83 

0·60 0·2094 2·37 2·38 2·35 2·15 2·33 2·30 
0·3142 3·95 3·96 3-88 3-32 3·77 4·02 

4·16 
0·3864 5·82 5·84 5·70 4·56 5-40 5·86 
0·4451 8·20 8·22 8·06 6·00 7·37 8·19 

0·3333 0·2333 2·37 2·37 2·37 1·77 2·23 2·37 
0·3106 3·36 3·36 3·38 2·16 2·99 3·36 
0·3808 4·76 4·78 4·83 2·62 3·97 4·76 
0·4393 6·57 6·58 6·74 3·10 5·08 6·57 
0·5068 9·90 9·89 10·51 3·77 6·87 9·77 

a First-order perturbation theory with a pure hard sphere reference - Eq. (5.53). b First-order 
perturbation theory with a pure hard sphere reference - Eq. (5.55). 
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is known. The virial form reads as 

(v) (5.43) 

while the compressibility c-form is identical to the SPT equation (5.38). 

A thorough analysis of the P-Y theory results was carried through by Lebowitz and 
Rowlinson253 • Similarly to the case of pure HS, the P-Y (v) and (c) results bound 
the correct pressure with discrepancies not exceeding 5 per cent and both are exact 
for Ul.!U2 --+ O. The excess volume VE is always negative when the c-form is used 
but it becomes positive at high pressures if it is evaluated from the v-form. However, 
GE is always negative and no phase separation thus takes place. Concerning the 
consistency expressed by Eq. (5.16), both the c- and v-forms satisfy this equation. 

Extended Andrews' EOS. Andrews and Ellerby254 followed the same ideas which 
had lead to Eq. (4.65) for pure HS. They introduce a quantity w'" which is a volume 
occupied by all particles when they are jammed together so that there is no space 
available for a test particle of type IX. Volume w'" enables one to express the condi­
tional probability that, provided that there is a free space in vicinity of a molecule 
of type P to absorb a point, there is also an additional space to absorb a test particle 
of type oc. After realizing that the probability that a randomly chosen point lies out­
side all hard spheres equals one minus the fraction of the unoccupied space, i.e. 
(1 - I:.N","f'"",/V), the residual chemical potential of species oc can be written as 

exp [ - PJlres,,,,] = (1 - ?:. {} LXPU:) exp {- 1t(l LXp[(u", + Up)3 - un} . 
6 II 6( I - (lWa) II 

(5.44) 

Volume w'" depends slightly on density and Andrews and Ellerby approximate this 
dependence by a·linear function, 

WIZ = wo,,,, + d(wc,,,, - WO,II) , (5.45) 

where d is a reduced density (e/. Subsection 4.4.2.), 

(5.46) 

q is the smallest diameter, and t", = ulZ/u, Parameter we,1Z is given by WIZ at the close­
packed volume and wo.", can be determined from the third virial coefficient; for both 
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these quantities approximate expressions were used. The EOS corresponding to 
(5.44) assumes then the form 

ppl(! = l:x" { b~d __ 6 ___ In (1 _ 1t .j2d) _ 
1 - (t + L1,,) d + L1"d2 1t .j2d 6 

_ b,,(1 + L1,,) In (1 - dL1,,) _ ~ In [1 _ (1 + L1 ) d + L1 d2]}. (5.47) 
2L1,,(1 - L1~) d 1 - d 2dL1", "" 

Here 

(5.48) 

(5.49) 

and 

a"p = 1 for f",ltp ~ 1 , 

14 15t" 
a"p = - + -- for t"ltp ~ 1 . 

29 29fp 
(5.50) 

Examining Table XXXVII one can see that Eq. (5.47) yields results comparable or, 
at higher densities, inferior to Eq. (5.39). 

One fluid approach. In addition to the above extensions of the pure fluid theories 
there are also methods developed solely for mixtures. They all have two factors 
in common: (i) to first order, the properties of a mixture, apart from the ideal entropy 
of mixing, are estimated by a suitably defined pure fluid reference and (ii) they enjoy 
considerable flexibilily in choosing the parameter of expansion. A review on most of 
these theories can be found in ref.255. It is also worth mentioning that a number 
of theories, at least in the lowest order, coincide for HS mixtures. 

One-fluid reference perturbation theory has been developed by Leonard and 
coworkers256 as an extension of the Barker-Henderson theory257, but the results 
for HS mixtures were obtained already earlier by Henderson and Barker258. Up 
to the first order, the free energy is given by 

(5.51) 

where subscript zero denotes properties of a pure fluid HS reference and, in general, 

(5.52) 
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In the simplest version, the expansion is performed directly in powers of (1«p - (10 

(i.e. n = 1) and the diameter of the reference HS is determined by anulling the 
first-order term of the expansion. The result is 

(5.53) 

which for additive HS simplifies to 

(5.54) 

One may expect that expansion in direct potential parameters will be inferior to 
other, more flexible choices. Smith205 examined a family of conformal expansions 
and showed that the best result is achieved when the volume is taken as a variable. 
It means for spheres to expand in powers of (1;11 - (1~. With this choice the diameter 
of the reference HS is given by 

(5.55) 

which is identical to the original van der Waals (vdW) one-fluid theory and the 
conformal solution theory (for details see ref. 255). 

Table XXXVII also shows the results given by the first-order one-fluid theories 
n = 1 and 3. It is seen that the choice n = 3 is clearly better, but yet inferior to Eqs 
(5.39) and (5.40). However, if these theories are extended to second order then the 
reverse is true and the choice n = 1 yields quite accurate results255 • This may indicate 
that this choice has better convergence properties. 

The expansion in powers of (1«p - (10 is not the only choice but besides simplicity 
it has also the virtue of annulling the most complex term in the second-order ex­
pansion. 

It is known that for hard body mixtures the excess volume VE is very small, VE ~ O. 
One may therefore define (10 so that VE = 0 in zero order255 • This may be a better 
choice but the theory would be definitely more complex and we are not aware of any 
result based on this assumption. Another possibility of utilizing the finding VE ~ 0 
is to use it directly for evaluating the EOS246 • If VE = 0 at constant pressure is 
assumed (i.e. ideal mixing), EOS of a mixture is given by those of pure components: 

(5.56) 

where z« is the compressibility factor of component a with x«N particles at the pres­
sure P. The results obtained from Eq. (5.56) are very good, with largest discrepancies 
appearing at low density246. Nevertheless, if the density is considered as an inde­
pendent variable (which is usually the choice), then evaluation of PP/e is not straight­
forward and we may look upon this equation rather as a way of estimating the 
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mixture compressibility factor by using those of pure components than a true EOS 
of a mixture. 

Looking for an expansion parameter in a conformal theory it is tempting to choose 
the difference 

(5.57) 

where Uref is an undefined reference potential. For HB fluids the perturbation LJ ap 
may become infinite and better would be to take thus the difference of the Mayer 
functions 259, 

LJfap = faP - frer • 

On requiring again that the first order contribution to the Helmholtz free energy be 
zero we get 

(5.58) 

or, equivalently, 

(5.59) 

The reference potential given by this equation is called the pseudopotential260 and 
for the HS mixture (with O"l < 0"2) it reads as 

00 for r < 0"1 

- In xi for 0"1 < r < 0"12 

pUrer(r) = - In (xi + 2XIX2) for 0"12 < r < 0"2 

0 for r < 0"2. (5.60) 

Barker and coworkers261 made MC simulations of the pure fluid given by (5.60), 
XI = X2 = 0·5, and 0"1/0"2 = 0·6, but the results were rather discouraging. 

5.4.2. Non-additive Hard Spheres 

There are several reasons making studies of this system appealing: 

(i) within the context of perturbation theories an advantage would be gained if 
the diameter 0"12 could be treated as an adjustable one. (For instance, in the Barker­
-Henderson theory with a multicomponent reference fluid the first-order term could 
be made to vanish with a suitable choice of 0" 12). 

(ii) Experimental data on the structure of certain liquid binary alloys (e.g. Cu-Sn) 
show that the partial structure factor of unlike ions does not fall midway between 
the other two. The simplest system exhibiting the same type of behaviour is just that 
of non-additive HS. 
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(iii) The non-additive system with b < 0 exhibits a fluid separation at higher densi­
ties; in a special case of tTl = tT2 = 0 the system is isomorphic to the Widom­
-Rowlinson penetrable sphere model. 

The non-additive HS mixtures with both b < 0 and b > 0 have been attacked 
by various theoretical methods: the P-Y theory, SPT, perturbation and conformal 
theories, and Pade approximants. 

For mixtures with positive departure from additivity, Lebowitz and coworkers, 
in addition to the exact solution262 in one dimension for b ~ (tT2 - tTl)/(tT2 + tTl), 
tT2 < tTl' solved also analyticalIy the P-Y equation in three dimensions263 • In a general 
case the equation was not solved explicitly because of its complexity. However, for 
a 1 = tT2 = 0 (i.e. for the Widom-Rowlinson model) they obtained the EOS in 
a closed form. The same model was also investigated by Melnyk and coworkers234 

by means of a Pade analysis based on the first seven terms (ef. Eq. (5.20». Both 
approaches agree in locating the critical density at about l!e = 1·674 if the compres­
sibility equation is used. The vi rial form of the EOS yields l!e = 1'788. It is also 
worth noting that there does not exist a solution of the P-Y equation beyond a certain 
maximum density. 

A more general mixture with positive departure from additivity was investigated 
by Melnyk and Sawford 240 . They considered the case tTl = tT2 = tT, b = 0·2, and two 
variants of the perturbation theory: one with a pure HS and the other with an addi­
tive HS mixture reference. In the first case the free energy of the studied system is up 
to the first order term given by Eq. (5.51) with 

(5.61) 

and 11 is taken either 1 or 3 (el. the preceding subsection). Employing the C-S equa­
tion of state, F ° has the form 

fJF olN = In (! - 1 + (41'/0 - 31'/~)1( 1 - 1'/0)2 , (5.62) 

where 110 = rr{!tT~/6 is the packing fraction of the HS reference. Due to the non-zero 
value of b, b > 0, beginning from a critical density, l!e' a demixing of the non-addi­
tive HS mixture into two phases, each with predominant content of molecules of one 
kind, occurs. Obviously, because of symmetry the critical point appears at Xl = 
= X2 = 0·5. 

The condition of the critical point is 

(5.63) 

Thus, on taking into account the relation between 11 (the packing fraction of the 
studied mixture) and 11o, 
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(5.64) 

the dependence of the critical density on ~ can be determined: 

12110,e(2 - 110,e)/(1 - 110,e)3 = n[(1 + ~)n + 1]/[(1 + ~t - 1] . (5.65) 

For n = 1, 110,e = 0·234 and hence 11e = 0·176 and for n = 3, 11o,e = 0·236 which 
implies 11e = 0'173. None of these values agrees with the simulation result of 11e = 

= 0·22. 

In the case when the mixture of additive HS is chosen as a reference, 110 = 11 
and fJ(F - F oliN is - within the first order perturbation theory - given by the 
contribution of a pair of unlike molecules: 

(5.66) 

Since 0'1 = 0'2 = 0', gliO') equals the contact value of the radial distribution of pure 
hard spheres which can be determined from an accurate EOS. For instance, from the 
C-S equation we get 

g(O') = (1 - 11/2)/(1 - 11)3 , (5.67) 

which in combination with (5.63) and (5.66) yields the following equation for 11e: 

11: - 3(1 + 2~) 11~ + 3(1 + 4~)"e - 1 = 0 . (5.68) 

For ~ = 0·2 the critical packing fraction is 11e = 0'221, which perfectly agrees with 
the simulation result. 

Melnyk and Sawford240 also considered second order corrections to the above 
results but came to the conclusion that these were inferior to the first-order perturba­
tion theory with the HS mixture reference. 

Along with simulations for systems with negative departure from additivity, 
Adams and McDonald241 did theoretical calculations using both the pure HS and 
additive HS mixture reference systems in the Barker-Henderson theory and one­
-fluid vdW theory. 

Concerning the results based on a pure fluid reference and small values of ~, the 
Barker-Henderson theory is superior to the van der Waals theory within the first­
-order expansion. When the second-order terms are included, both methods yield, 
due to remarkable cancellations, very similar results over a wide range of e. The 
expansion employing a mixture reference gives always good results provided that ~ 
is small. However, none of the approximations discussed is useful at large values 
of ~ except when the density is very low. 
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Recently Levesque and coworkers264 and Nixon and Silbert26s applied the P-Y 
theory to mixtures with negative departure from additivity and the results of their 
calculations exhibit an interesting trend: the more negative the non-additivity para­
meter, the better agreement between the P-Y and simulation results is obtained. 

The system of non-additive HS was also investigated by means of the SPT by 
Bergmann266-268. Application of the SPT to non-additive HS is not straightforward 
because it requires changes in all three "ingredients" which make up the theory: 
(i) the choice of the interaction of the scaled particle with the other particles, (ii) the 
asymptotic limit, and (iii) the boundary conditions for very small values of the scaling 
parameter. Moreover, evaluation of the pressure is not unique and we refer readers 
to refs266-268 and quotations therein for details. 

5.5. Theories 0/ Nonspherical Body Mixtures 

From all the methods mentioned earlier only the SPT retains its importance also 
for nonspherical HB mixtures. Integral equations are (at least at present) out of game 
and one must be quite sceptical about the capacity of perturbation and conformal 
theories. The latter methods are therefore only briefly touched at the end of this 
section. 

The SPT equation of mixtures was, similarly to pure nonspherical body fluids, 
first proposed by Gibbons191 and then re-derived by Boublik14 employing the 
correlation function formalism. The derivation follows the same pattern as that 
for pure nonspherical bodies and a HS mixture. There is only one difference, in 
comparison with HS mixtures, that the sort of a test particle must be explicitly 
considered from the very beginning. Let ~:;(~) be the average pair correlation 
function of a test particle IX, characterized by a dilatation parameter ~, which is in 
contact with particle p. Then for ~ ~ 0 it holds (c/. Eq. (5.32» 

~:;{~) = 1/[1 L ey'i'" .. +i~)], ~ ~ O. (5.69) 
y 

where 

(5.70) 

The function ~:; is then approximated by a polynomial whose coefficients are 
determined from the usual conditions: 

~:;(e = 0) = 1/(1 - :Ley'i'"y) 

(a~:p) = rJf .. :Ley.9y/(l - Ley'i'"y)2 
a~ (=0 

PPp = ep~:;(~ ~ 00) . 

(5.71) 

(5.72) 

(5.73) 
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The resulting EOS assumes then the form 

{Jp/(} = _1_ + __ r_s_ + qs2 , 
1 - 11 (}(l - I1Y 3(}(1 - 11)3 

(5.74) 

where r, q, and s are geometric quantities of a mixture defined as follows: 

(5.75) 

It can be proved that Eq. (5.74) satisfies the consistency conditions (Eq. (5 .16)). In 
the case of HS Eq. (5.74) reduces to Eq. (5.38) and for a pure HB fluid to Eq. (4.96). 

It is evident that one would like to have an equation which would reduce to the 
improved versions of the SPT in the above limiting cases. Such an equation has 
been derived by Boublik and it reads as 

(5.76) 

This is at present the most universal EOS of HB fluids. It yields fairly accurate 
description of mixtures of CB with parameters a ;5 1·2 (see Table XXXVIII) and 
its accuracy increases with decreasing a. It is also the best equation of mixtures 
of FHS bodies (with the same limitations as those applying to pure FHS fluids) 
if these are described by means of the geometric functionals fJIl, Y, and"f/" - see 
Subsection 4.5.2. 

TABLE XXXVIII 

Compressibility factors of equimolar mixtures of spheres and prolate spherocylinders with 
y = 2 calculated from approximate equations of state 

Conditions 
Eq. (5.76) Eq. (5.79) Eq. (5.81) exact 

O"HS = O"pse 0·20 2·52 2·50 2·51 2·50 

0·30 4·24 4·19 4·19 4·11 

0·40 7·54 7-34 7·36 7·31 

0·45 10·31 9·95 9·97 9·87 

"f/" HS = "f/"pse 0·20 2·54 2·54 2·54 2·52 

0·30 4·30 4·26 4·26 4·20 

0·40 7-65 7·52 7-49 7·39 

0·45 10·47 10·22 10·16 10·22 
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Eq. (5.76) represents an extension of Eq. (4.105) which is known to produce 
unsatisfactory results if the nonsphericity of particles becomes significant (IX > 1'2). 
The same must then hold for mixtures, too. It is therefore natural to think about 
extending more accurate pure fluid equations to mixtures but this is in no way 
a simple problem. Formally such an extension can be made for any equation con­
taining the geometric functionals !Jlt, [1', and "f'" by replacing them according to 

(5.77) 

which is equivalent to the change 

(5.78) 

It can be easily shown that this transform brings the pure fluid EOS (4.96) and 
(4.105) to (5.74) and (5.76), respectively. 

If the above scheme is applied to the Nezbeda equation (4.117), the resulting 
equation is accurate for mixtures of PSC and spheres, but it yields results inferior 
to those of the BMCSL equation for HS mixtures. Pavlicek and coworkers 269 

devised therefore a method enabling one to extend any pure fluid EOS to mixtures 
under the constraint that for HS it reduces to the BMCSL equation. The method 
exploits certain relations of the SPT but yet it is not unique and at one step it req uires 
an empirical guess. PavliCek and coworkers269 obtained the equation 

(5.79) 

where t and ware additional geometric functionals, 

(5.80) 

Rather a complex form of this equation is an obvious consequence of the imposed 
constraint to contain the BMCSL equation as a special case. (One sees that the 
only "straightforward" extension of the BMCSL equation is Eq. (5.76)). In a later 
study Boublik65 has therefore dropped this constraint and after employing expres­
sions (5.23) and (5.26) for the third and fourth virial coefficients of CB mixtures he 
has derived an equation 
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(5.81) 

which is only slightly more complex then Eq. (5.76). 
In Table XXXVIII we compare the compressibility factors given by Eqs (5.76) 

and (5.79) with simulation data for two equimolar mixtures of PSC and HS. It is 
seen that the results produced by Eq. (5.79) are in perfect agreement with the simula­
tion data and the results of Eq. (5.76) are practically the same. Because of the lack 
of data for other CB mixtures we may only conjecture about the accuracy of the 
two equations in general but it is believed that they will perform similarly as their 
pure fluid predecessors. It should be only reminded that they are not suitable for 
FHS mixtures. 

Concerning FHS mixtures, the only reasonable way of calculating their properties 
seems to be the same as that used for pure FHS fluids: the Boublik-Nezbeda method 
of defining the parameter of nonsphericity in combination with the improved SPT 
equation, i.e. Eq. (5.76). Wojcik and Gubbins238 and Nezbeda and coworkers l21 

applied this method to the available simulation data and found very good agreement 
(in most cases within experimental errors) for all systems but one: the mixture of 
heteronuclear dumbells and linear triatomics. This is the only mixture studied so 
far whose both components are nonspherical and qualitatively different. In ac­
cordance with our experience with pure FHS fluids, deterioration of the Boublik­
-Nezbeda method for such systems may be anticipated. It may be also interesting 
to note that this is the only mixture for which the Amagat law, i.e. the assumption 
of ideal mixing, fails to give an accurate compressibility factor. 

Perturbation and conformal theories need a reference system to expand about. 
For nonspherical HB mixtures the only candidates are either a pure HS fluid or 
a multicomponent HS mixture. However, in Section 4.5. we have shown that the 
model of hard spheres is not able, in principle, to estimate accurately the properties 
of non-spherical bodies over a wide range of densities and this finding can in no 
way be encouraging to try this approach for mixtures. Few attempts made in this 
direction seem also to support this view and therefore we are not going to comment 
on them further. 

5.6. Discussion 

For HS mixtures the existing computer data cover the range of diameter ratios up 
to 1 : 3. Besides equimolar mixtures also concentration limits have been studied 
so that the data seem sufficient. Simple and accurate pure fluid equations, (4.44) 
and (4.46), have been extended to mixtures, Eqs (5.39) and (5.40), and they both 
yield very accurate description of HS mixtures over the entire density and concentra­
tion ranges. Other equations are inferior to these. Concerning the perturbation 
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methods, the expansions must be considered up to the second order if accurate results 
are to be obtained. This requires numerical computations which disfavours these 
methods. On the other hand, they may be successfully applied to nontrivial mixtures 
like e.g. mixtures of non-additive HS. 

For nonspherical body mixtures the situation is different. First, the only non­
spherical shape of components considered up to now has been linear. Second, most 
mixtures contained only one nonspherical component with the other being hard 
spheres. Third, the data on nonspherical body mixtures are usually less accurate 
in comparison with those on pure fluids and HS mixtures. Finally, as one proceeds 
from the pure fluid of HS via pure nonspherical body fluids and mixtures of HS 
through mixtures of nonspherical bodies, the origina]]y abundant number of theories 
and methods available shrinks to a few only. A]] these facts make any assessment 
of the theories quite difficult. 

For CB mixtures the extended versions of Eqs (4.117) and (4.118), Eqs (5.79) 
and (5.81), compare very we]] with the existing data and the same can be expected 
if the component nonsphericities are only reasonably mild. However, nothing can 
be said about their performance if a mixture were made up of nonlinear components. 
A similar conclusion holds true also for FHS fluid mixtures. The Boublik-Nezbeda 
method provides results which in most cases agree with simulation data within 
experimental errors. However, the method fails for the mixture of linear triatomics 
and heteronuclear dumbells, the only mixture with both qualitatively different non­
spherical components studied so far. 

The excess volume is very small and usually within experimental errors which 
makes its direct determination very difficult. The indirect method, the assumption 
of ideal mixing, yields quite accurate results for all mixtures but, again, that of linear 
triatomics and heteronuclear dumbells. It is hard to say if this is going to be a rule 
unless further simulations on more complex mixtures are performed. 

6. CONCLUDING REMARKS 

With only few exceptions, the methods and results compiled in this review represent 
the output of studies initiated in the late 1960ieth by the finding that the structure 
of normal liquids is determined primarily by the repulsive forces acting between 
molecules. To judge to what extent the basic problems have been satisfactorily solved 
within these two decades and what remains to be done, depends on the point from 
which we view this field. 

No doubt the greatest progress has been made towards description and under­
standing of fluids of spherical particles. For the pure hard sphere fluid the present 
situation is very satisfactory both from the theoretical and experimental points 
of view. Practically the same can be also said about hard sphere mixtures on condi­
tion that the ratio of the hard sphere diameters is not extremely small (1 ;S 0'2/0'1 < 1). 
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The main problems the theory faces are thus associated with nonsphericity of particles. 
Practically all theoretical approaches to non-spherical hard body fluids either 

employ directly, or are somehow related to the convex body geometry. The mean 
excluded volume of a pair of identical convex particles can be characterized by 
a single parameter of nonsphericity, IX, and this quantity emerges both in the expres­
sion for the second virial coefficient and in the equation of state resulting from the 
extended scaled particle theory. This theory provides also a functional form used 
for deriving more accurate equations of state and approximate expressions for higher 
vi rial coefficients. 

With the exception of equations good for specific systems only, all general and 
accurate equations are based either on the scaled particle theory or on the resumma­
tion of the virial expansion. In contrast to the scaled particle theory, the virial expan­
sion still possesses a capacity to push our understanding of hard body fluid proper­
ties forward if the geometric problem of clusters of at least three and four particles 
were exactly solved (approximate estimates may hardly help because they usually 
work on the level of two-particle clusters). This concerns the convex body models 
while for the fused-hard-sphere models the even more elementary problem of a pair 
of bodies has not been generally solved yet. The present approach to the fused­
-hard-sphere rr.odels makes use of the convex body results which seems the weakest 
point of the theory: Although the convex-like approach can produce reasonable, 
and very often quite accurate, results it is theoretically justified only for a limited 
class of models. Cracking the above mentioned geometrical problems may thus 
provide a clue to introducing rigorously a highly demanded second parameter of 
nonsphericity because semi-empirical methods have failed so far. Unless this is done 
we cannot expect any substantial breakthrough to take place. 

On various occassions we have already mentioned the lack of data. One reason for 
that surely is the complexity once we have to deal with bodies different from spheres. 
To calculate the shortest distance between a pair of geometrical objects is a trivial 
matter for spheres, still simple and only more computer time consuming for fused­
-hard-sphere models but quite complicated for convex body models. For this reason 
the only convex shapes considered so far have been spherocylinders (both prolate 
and oblate) and ellipsoids. It is also possible to simulate properties of mixtures of 
bodies of one type but other possibilities cause considerable numerical complications 
and we doubt they will be considered in near future. The fused-hard-sphere models 
seem thus better candidates for computer studies which is already reflected by variety 
of the studied systems. This is, however, a rather paradoxical situation: convex body 
models possess a virtue of enabling us to study theoretically even extremal systems, 
like e.g. infinitely thin rods or discs, without additional effort and for this reason, 
and with respect to their fundamental role in developing the theory of nonspherical 
body fluids, more data for convex body fluids are highly demanded. 

In addition to the general lack of data, another problem associated with simula-
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tions is the accuracy of the results. With the only exception of the pure hard sphere 
fluid, accuracy of no existing data matches the demanded standard. It is therefore 
impossible in many cases to differentiate between various methods which aU agree 
with the data within wide error bars. 

Despite a number of pending theoretical problems, some of which we have men­
tioned in the preceding paragraphs, the state-of-the-art of the liquid state is quite 
satisfactory from the engineering point of view. Nonsphericity of hard cores of real 
molecules falls practically always into the range IX < 1·2 and this justifies the applica­
tion of the accurate one-parameter equations of state to fluids made up of particles 
of any shape. Although there is not enough data to support it, we believe that the 
same can be said about mixtures, too. All these results constitute the necessary 
prerequisite for accomplishing a perturbation expansion leading to the so-called 
augmented van der Waals equations of state. In this type of equations with a sound 
theoretical basis, like e.g. BACK 270.271, Y As272 , chain-of-rotator equation273, or the 
equation due to Chung and coworkers131 , the leading hard body term accounts cor­
rectly for the repulsive forces between molecules while the less important contribution 
due to attractive forces is treated empirically. These equations are gradually crawling 
into engineers' consciousness and are on its way to replace274 until recently exclusi­
vely used purely empirical equations. All these facts only underline importance 
of studies of the hard body fluid properties. 

We are very grateful to Dr K. Aim/or careful reading the manuscript and to our students, J. Ko­
la/a and R. Kantor, for checking the results showed in the Tables. Valuable discussions with our 
collegues, Drs S. Labfk and A. Malijevsky, are also acknowledged. 

LIST OF IMPORTANT SYMBOLS 

<"(1,2) 

d 
e 

f 
g(I,2) 

gklm 

Ie 
s 
u(l, 2), u 

vf 

w 
X 

y(l,2) 
z 
Bj 

B, C, etc. 
F 
G 
<§ 

direct correlation function, convolution function 
reduced density, d = e/ee 
Boltzmann factor 
Mayer function, f = e - 1 
pair correlation function 
spherical harmonic expansion coefficient 
shortest core-to-core distance­
surface-to-surface distance 
pair potential 
free volume 
average volume per particle 
mole fraction 
background correlation function 
compressibility factor, z = PP/e 
virial coefficients (/1 - expansion) of pure fluids 
virial coefficients (/1 - expansion) of mixtures 
Helmholtz free energy 
Gibbs free energy, site-site correlation function 
certain pair correlation function 
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L 
N 
P 

P(m. n). P Ali' P", 
Bt • .'7',"I'" 
T 
V 

w 
Z 
rx 
fJ 
y 

J 

(i 

1J 
II 
v 

(J' 

r. ( 

number of lattice sites. intramolecular distances 
number of molecules 
pressure 
Pade approximants 
geometrical functionals of hard bodies 
absolute temperature 
volume of a system 

reversible work 
configuration integral 
parameter of nonsphericity, oc = [JIf/' 13"1'" 
= l/kT 
length-to-breadth ratio of a convex body 
Dirac function. parameter of nonadditivity 
parameters of a HS mixture 
packing fraction, 1J = fl"l'" 
chemical potential 
normal of the supporting plane 
dilatation parameter 
number density 
breadth of a body 
second parameters of nonsphericity 

LIST OF ABBREVIATIONS 

A-H 
BBGY 
B-G 
B-H 
BMCSL 
B-N 
c 
CB 
CM 
C-S 
\-0 •... 
F 
EOS 
F-W 

FHS 
HB 
HNC 
HOMO DB 
HS 
IS 
ISPT 
MC 
MD 
med 

Alder-Hoover 
Bogolyubov-Born-Green-Yvon 
Barboy-Gelbart 
Barker-Henderson 
Boublik-Mansoori-Carnahan-Starling-Leland 
Boublik-Nezbeda 
compressibility form, close-packed, critical, contact value 
convex body 
centre-of-mass 
Carnahan-Starling 
one-dimensional, ... 
excess 
equation of state 
Erpenbeck-Wood 

fused-hard-sphere 
hard body 
hypernetted chain 
homonuclear dumbell 
hard sphere 
interaction site 
improved scaled particle theory 
Monte Carlo 
molecular dynamics 
median 
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N-L 
nonsph 
OSC 
O-Z 
PA 
PSC 
P-Y 
RAM 
ref 
RISM 
SC 
SPT 
v 

vdW 
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